Solveeit Logo

Question

Question: If roots of the quadratic equation \(\left( b-c \right){{x}^{2}}+\left( c-a \right)x+\left( a-b \rig...

If roots of the quadratic equation (bc)x2+(ca)x+(ab)=0\left( b-c \right){{x}^{2}}+\left( c-a \right)x+\left( a-b \right)=0 are real and equal then prove that 2b=a+c2b=a+c.

Explanation

Solution

We solve this problem by first considering the concept of nature of the roots of a quadratic equation. Then we use the formula for the determinant of the quadratic equation ax2+bx+ca{{x}^{2}}+bx+c, b24ac{{b}^{2}}-4ac and equate it to zero as the roots are equal and real. Then we use the formula (ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab for simplifying the obtained equation. Then we simplify it using the formula, a2+b2+c2+2ab+2bc+2ac=(a+b+c)2{{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac={{\left( a+b+c \right)}^{2}} and solve it to prove the required relation.

Complete step-by-step solution
We are given that the roots of the quadratic equation (bc)x2+(ca)x+(ab)=0\left( b-c \right){{x}^{2}}+\left( c-a \right)x+\left( a-b \right)=0 are real and equal.
First, let us go through the nature of the roots of any quadratic equation say ax2+bx+ca{{x}^{2}}+bx+c.
If the quadratic equation has two imaginary roots, then the discriminant is less than zero, that is,
b24ac<0{{b}^{2}}-4ac<0
If the quadratic equation has two real and equal roots, then the discriminant is equal to zero, that is,
b24ac=0{{b}^{2}}-4ac=0
If the quadratic equation has two real and distinct roots, then the discriminant is greater than zero, that is,
b24ac>0{{b}^{2}}-4ac>0
As we are given that the given equation (bc)x2+(ca)x+(ab)=0\left( b-c \right){{x}^{2}}+\left( c-a \right)x+\left( a-b \right)=0 has equal roots, so discriminant is equal to zero.
Now, we apply this formula to the given expression, we get
(ca)24(bc)(ab)=0\Rightarrow {{\left( c-a \right)}^{2}}-4\left( b-c \right)\left( a-b \right)=0
Now let us consider the formula,
(ab)2=a2+b22ab{{\left( a-b \right)}^{2}}={{a}^{2}}+{{b}^{2}}-2ab
By simplifying the above equation using this formula, we get,

& \Rightarrow {{\left( c-a \right)}^{2}}-4\left( b-c \right)\left( a-b \right)=0 \\\ & \Rightarrow \left( {{c}^{2}}+{{a}^{2}}-2ac \right)-4\left( ab-{{b}^{2}}-ac+bc \right)=0 \\\ & \Rightarrow {{c}^{2}}+{{a}^{2}}-2ac-4ab+4{{b}^{2}}+4ac-4bc=0 \\\ & \Rightarrow {{c}^{2}}+{{a}^{2}}+4{{b}^{2}}-4ab+2ac-4bc=0 \\\ & \Rightarrow {{a}^{2}}+4{{b}^{2}}+{{c}^{2}}-4ab+2ac-4bc=0 \\\ \end{aligned}$$ We can write the above equation as, $$\begin{aligned} & \Rightarrow {{a}^{2}}+{{\left( 2b \right)}^{2}}+{{c}^{2}}-2\left( a \right)\left( 2b \right)+2\left( a \right)\left( c \right)-2\left( 2b \right)\left( c \right)=0 \\\ & \Rightarrow {{a}^{2}}+{{\left( -2b \right)}^{2}}+{{c}^{2}}+2\left( a \right)\left( -2b \right)+2\left( a \right)\left( c \right)+2\left( -2b \right)\left( c \right)=0 \\\ \end{aligned}$$ Now let us consider the formula, $${{a}^{2}}+{{b}^{2}}+{{c}^{2}}+2ab+2bc+2ac={{\left( a+b+c \right)}^{2}}$$ Using this formula, we can write the above equation as, $$\begin{aligned} & \Rightarrow {{a}^{2}}+{{\left( -2b \right)}^{2}}+{{c}^{2}}+2\left( a \right)\left( -2b \right)+2\left( a \right)\left( c \right)+2\left( -2b \right)\left( c \right)=0 \\\ & \Rightarrow {{\left( a-2b+c \right)}^{2}}=0 \\\ & \Rightarrow a-2b+c=0 \\\ & \Rightarrow 2b=a+c \\\ \end{aligned}$$ So, we get that $2b=a+c$. Hence Proved. **Note:** We can also solve this question in another method. Let us substitute the value $x=1$ in the given equation. Then we get, $\begin{aligned} & \Rightarrow \left( b-c \right){{\left( 1 \right)}^{2}}+\left( c-a \right)\left( 1 \right)+\left( a-b \right)=0 \\\ & \Rightarrow \left( b-c \right)+\left( c-a \right)+\left( a-b \right)=0 \\\ & \Rightarrow 0=0 \\\ \end{aligned}$ So, we get that 1 is a root. As the equation has equal roots both the roots are 1. Now let us consider the product of the roots of the given equation, $\left( b-c \right){{x}^{2}}+\left( c-a \right)x+\left( a-b \right)=0$. $\begin{aligned} & \Rightarrow \dfrac{a-b}{b-c}=1\times 1=1 \\\ & \Rightarrow a-b=b-c \\\ & \Rightarrow 2b=a+c \\\ \end{aligned}$ Hence Proved.