Solveeit Logo

Question

Question: If roots of the equation $4K^2-4K-3 = 0$ are slope of tangents drawn from a point $P$ on the parabol...

If roots of the equation 4K24K3=04K^2-4K-3 = 0 are slope of tangents drawn from a point PP on the parabola y2=12xy^2 = 12x and let tangents touch the parabola at AA and BB, then which of the following is/are correct?

A

Area of PAB\triangle PAB is 2563\frac{256}{3} square units

B

Area of PAB\triangle PAB is 2543\frac{254}{3} square units

C

AB=14173AB = \frac{14\sqrt{17}}{3} units

D

AB=16133AB = \frac{16\sqrt{13}}{3} units

Answer

A, D

Explanation

Solution

The problem requires us to find the area of a triangle formed by a point P and the points of tangency A and B, where tangents from P are drawn to a parabola, and the length of the chord AB.

Step 1: Find the slopes of the tangents.

The given quadratic equation 4K24K3=04K^2-4K-3 = 0 represents the slopes of the tangents. We solve for KK using the quadratic formula K=b±b24ac2aK = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}:

K=(4)±(4)24(4)(3)2(4)K = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(4)(-3)}}{2(4)}

K=4±16+488K = \frac{4 \pm \sqrt{16 + 48}}{8}

K=4±648K = \frac{4 \pm \sqrt{64}}{8}

K=4±88K = \frac{4 \pm 8}{8}

The two slopes are:

m1=4+88=128=32m_1 = \frac{4 + 8}{8} = \frac{12}{8} = \frac{3}{2}

m2=488=48=12m_2 = \frac{4 - 8}{8} = \frac{-4}{8} = -\frac{1}{2}

Step 2: Identify the properties of the parabola.

The equation of the parabola is y2=12xy^2 = 12x. Comparing this with the standard form y2=4axy^2 = 4ax, we get 4a=124a = 12, so a=3a = 3.

Step 3: Find the point P (intersection of tangents).

The equation of a tangent to the parabola y2=4axy^2 = 4ax with slope mm is y=mx+amy = mx + \frac{a}{m}.

For m1=32m_1 = \frac{3}{2} and a=3a=3:

y=32x+33/2y=32x+2y = \frac{3}{2}x + \frac{3}{3/2} \Rightarrow y = \frac{3}{2}x + 2 (Equation 1)

For m2=12m_2 = -\frac{1}{2} and a=3a=3:

y=12x+31/2y=12x6y = -\frac{1}{2}x + \frac{3}{-1/2} \Rightarrow y = -\frac{1}{2}x - 6 (Equation 2)

To find point P, we solve Equations 1 and 2:

32x+2=12x6\frac{3}{2}x + 2 = -\frac{1}{2}x - 6

3x+4=x123x + 4 = -x - 12 (multiplying by 2)

4x=16x=44x = -16 \Rightarrow x = -4

Substitute x=4x=-4 into Equation 1:

y=32(4)+2=6+2=4y = \frac{3}{2}(-4) + 2 = -6 + 2 = -4

So, the point P is (4,4)(-4, -4).

Step 4: Find the points of tangency A and B.

The coordinates of the point of tangency for a tangent with slope mm to y2=4axy^2 = 4ax are (am2,2am)\left(\frac{a}{m^2}, \frac{2a}{m}\right).

For m1=32m_1 = \frac{3}{2} and a=3a=3:

Point A: (3(3/2)2,2(3)3/2)=(39/4,63/2)=(3×49,6×23)=(43,4)\left(\frac{3}{(3/2)^2}, \frac{2(3)}{3/2}\right) = \left(\frac{3}{9/4}, \frac{6}{3/2}\right) = \left(3 \times \frac{4}{9}, 6 \times \frac{2}{3}\right) = \left(\frac{4}{3}, 4\right)

For m2=12m_2 = -\frac{1}{2} and a=3a=3:

Point B: (3(1/2)2,2(3)1/2)=(31/4,61/2)=(3×4,6×(2))=(12,12)\left(\frac{3}{(-1/2)^2}, \frac{2(3)}{-1/2}\right) = \left(\frac{3}{1/4}, \frac{6}{-1/2}\right) = \left(3 \times 4, 6 \times (-2)\right) = \left(12, -12\right)

So, A=(43,4)A = \left(\frac{4}{3}, 4\right) and B=(12,12)B = (12, -12).

Step 5: Calculate the area of PAB\triangle PAB.

The coordinates are P(4,4)P(-4, -4), A(43,4)A(\frac{4}{3}, 4), B(12,12)B(12, -12).

The area of a triangle with vertices (x1,y1)(x_1, y_1), (x2,y2)(x_2, y_2), (x3,y3)(x_3, y_3) is 12x1(y2y3)+x2(y3y1)+x3(y1y2)\frac{1}{2} |x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)|.

Alternatively, for a parabola y2=4axy^2 = 4ax, if tangents are drawn from an external point P(x1,y1)P(x_1, y_1), the area of PAB\triangle PAB is given by (y124ax1)3/22a\frac{(y_1^2 - 4ax_1)^{3/2}}{2a}.

Using this formula with P(4,4)P(-4, -4) and a=3a=3:

y124ax1=(4)24(3)(4)=16+48=64y_1^2 - 4ax_1 = (-4)^2 - 4(3)(-4) = 16 + 48 = 64

Area of PAB=(64)3/22(3)=(64)36=836=5126=2563\triangle PAB = \frac{(64)^{3/2}}{2(3)} = \frac{(\sqrt{64})^3}{6} = \frac{8^3}{6} = \frac{512}{6} = \frac{256}{3} square units.

This matches option A.

Step 6: Calculate the length of the chord AB.

Using the distance formula d=(x2x1)2+(y2y1)2d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} for A(43,4)A(\frac{4}{3}, 4) and B(12,12)B(12, -12):

AB=(1243)2+(124)2AB = \sqrt{\left(12 - \frac{4}{3}\right)^2 + (-12 - 4)^2}

AB=(3643)2+(16)2AB = \sqrt{\left(\frac{36-4}{3}\right)^2 + (-16)^2}

AB=(323)2+256AB = \sqrt{\left(\frac{32}{3}\right)^2 + 256}

AB=10249+256AB = \sqrt{\frac{1024}{9} + 256}

AB=1024+256×99AB = \sqrt{\frac{1024 + 256 \times 9}{9}}

AB=1024+23049AB = \sqrt{\frac{1024 + 2304}{9}}

AB=33289AB = \sqrt{\frac{3328}{9}}

To simplify 3328\sqrt{3328}: 3328=16×208=16×16×13=256×133328 = 16 \times 208 = 16 \times 16 \times 13 = 256 \times 13.

So, 3328=256×13=1613\sqrt{3328} = \sqrt{256 \times 13} = 16\sqrt{13}.

Therefore, AB=16133AB = \frac{16\sqrt{13}}{3} units.

This matches option D.

The correct options are A and D.