Solveeit Logo

Question

Question: If roots of the equation 3x<sup>2</sup> + 5x + 1 = 0 are (sec θ<sub>1</sub> – tan θ<sub>1</sub>) an...

If roots of the equation 3x2 + 5x + 1 = 0 are

(sec θ1 – tan θ1) and (cosec θ2 – cot θ2), then the equation whose roots are (sec θ2 + tan θ2) and (cosec θ2 + cot θ2) will be –

A

3x2 + 5x + 1 = 0

B

x2 + 5x + 3 = 0

C

3x2 – 9x + 7 = 0

D

7x2 – 9x + 2 = 0

Answer

x2 + 5x + 3 = 0

Explanation

Solution

Let secθ1 – tanθ1 = α, then secθ1 + tanθ1 = 1α\frac{1}{\alpha} and cosecθ2 – cotθ2 = β, then cosec θ2 + tanθ2 = 1β\frac{1}{\beta} given

α + β = – 53\frac{5}{3},

αβ = 13\frac{1}{3}

Required equation will be x2(1α+1β)\left( \frac{1}{\alpha} + \frac{1}{\beta} \right) x + 1αβ\frac{1}{\alpha\beta} = 0

⇒ x2(α+βαβ)\left( \frac{\alpha + \beta}{\alpha\beta} \right) x + 1αβ\frac{1}{\alpha\beta} = 0

⇒ x2 + 5x + 3 = 0