Solveeit Logo

Question

Question: If Rolle's theorem holds for the function $f(x) = x^3 - ax^2 + bx - 4, x \in [1, 2]$ with $f(\frac{4...

If Rolle's theorem holds for the function f(x)=x3ax2+bx4,x[1,2]f(x) = x^3 - ax^2 + bx - 4, x \in [1, 2] with f(43)=0f(\frac{4}{3}) = 0, then 2a - b is equal to:

Answer

\frac{31}{15}

Explanation

Solution

The problem states that Rolle's theorem holds for the function f(x)=x3ax2+bx4f(x) = x^3 - ax^2 + bx - 4 on the interval [1,2][1, 2], and f(43)=0f(\frac{4}{3}) = 0. We need to find the value of 2ab2a - b.

Since Rolle's theorem holds, we know that f(1)=f(2)f(1) = f(2). f(1)=1a+b4=ba3f(1) = 1 - a + b - 4 = b - a - 3 f(2)=84a+2b4=2b4a+4f(2) = 8 - 4a + 2b - 4 = 2b - 4a + 4 Setting f(1)=f(2)f(1) = f(2), we get ba3=2b4a+4b - a - 3 = 2b - 4a + 4, which simplifies to 3ab=73a - b = 7. (Equation 1)

We are also given that f(43)=0f(\frac{4}{3}) = 0. Substituting this into the function: f(43)=(43)3a(43)2+b(43)4=0f(\frac{4}{3}) = (\frac{4}{3})^3 - a(\frac{4}{3})^2 + b(\frac{4}{3}) - 4 = 0 642716a9+4b34=0\frac{64}{27} - \frac{16a}{9} + \frac{4b}{3} - 4 = 0 Multiplying by 27 to eliminate fractions: 6448a+36b108=064 - 48a + 36b - 108 = 0 48a+36b44=0-48a + 36b - 44 = 0 Dividing by -4: 12a9b+11=012a - 9b + 11 = 0, which gives us 12a9b=1112a - 9b = -11. (Equation 2)

Now we have a system of two linear equations:

  1. 3ab=73a - b = 7
  2. 12a9b=1112a - 9b = -11

From Equation 1, we can express bb in terms of aa: b=3a7b = 3a - 7. Substitute this into Equation 2: 12a9(3a7)=1112a - 9(3a - 7) = -11 12a27a+63=1112a - 27a + 63 = -11 15a=74-15a = -74 a=7415a = \frac{74}{15}

Now, substitute the value of aa back into the expression for bb: b=3a7=3(7415)7=7457=74355=395b = 3a - 7 = 3(\frac{74}{15}) - 7 = \frac{74}{5} - 7 = \frac{74 - 35}{5} = \frac{39}{5}

So, a=7415a = \frac{74}{15} and b=395b = \frac{39}{5}. We need to find the value of 2ab2a - b: 2ab=2(7415)395=1481511715=31152a - b = 2(\frac{74}{15}) - \frac{39}{5} = \frac{148}{15} - \frac{117}{15} = \frac{31}{15}

Therefore, 2ab=31152a - b = \frac{31}{15}.