Solveeit Logo

Question

Mathematics Question on Differentiability

If Rolle�s theorem for f(x)=ex(sinxcosx)f\left(x\right)= e^{x} \left(sinx - cosx\right) is verified on [π/4[\pi/4, 5π/4]5 \pi/4], then the value of cc is

A

π/3\pi/3

B

π/2\pi/2

C

3π/43\pi/4

D

π\pi

Answer

π\pi

Explanation

Solution

Given, f(x)=ex(sinx=cosx)f (x) = e^{x} (sin \,x = cos\, x)
on differentiating both sides w.r.t. , x1x_{1} we get
f(x)=exddx(sinxcosx)+(sinxcosx)ddx(ex)f'(x)=e^{x} \frac{d}{d x}(sin \,x-cos\, x)+(sin \,x-cos \,x) \frac{d}{dx}\left(e^{x}\right)
[by using product rule of derivative]
=ex(cosx+sinx)+(sinxcosx)ex=e^{x}(cos\, x+sin \,x)+(sin\, x-cos \,x) e^{x}
=2exsinx=2 e^{x} \, sin \,x
We know that, if Rolle's theorem is verified,
then their exist c(π4,5π4)c \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right), such that f(c)=0f' (c)=0
2ecsinc=0\therefore 2 e^{c} \,sin\, c=0
sinc=0\Rightarrow sin\, c=0
c=π2(π4,5π4)\Rightarrow c=\frac{\pi}{2} \in\left(\frac{\pi}{4}, \frac{5 \pi}{4}\right)