Solveeit Logo

Question

Question: If \({\rm{\omega }} \ne 1\) is a cube root of unity, and \({\left( {1 + {\rm{\omega }}} \right)^7} =...

If ω1{\rm{\omega }} \ne 1 is a cube root of unity, and (1+ω)7=A+Bω{\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}. Then (A, B) equals.
A) (0, 1)
B) (1, 1)
C) (1, 0)
D) (-1, 1)

Explanation

Solution

Conditions for w to be cube root of unity are: ω3=1{{\rm{\omega }}^3} = 1 and 1+ω+ω2=01 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0. Using these conditions, form two equations and solve for values of A and B.

Complete step by step solution:
Since w is the cube root of unity,
ω3=1{{\rm{\omega }}^3} = 1 and 1+ω+ω2=01 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0 (i)
Given, (1+ω)7=A+Bω{\left( {1 + {\rm{\omega }}} \right)^7} = {\rm{A}} + {\rm{B\omega }}
(ω2)7=A+Bω\Rightarrow {\left( { - {{\rm{\omega }}^2}} \right)^7} = {\rm{A}} + {\rm{B\omega }} [since,  1+ω=ω2]\left[ {{\rm{since}},{\rm{\;}}1 + {\rm{\omega }} = - {{\rm{\omega }}^2}} \right]
(ω3)4×ω2=A+Bω\Rightarrow - {\left( {{{\rm{\omega }}^3}} \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}
(1)4×ω2=A+Bω\Rightarrow - {\left( 1 \right)^4} \times {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }} [Equation (i)]
ω2=A+Bω\Rightarrow - {{\rm{\omega }}^2} = {\rm{A}} + {\rm{B\omega }}
1+ω=A+Bω\Rightarrow 1 + {\rm{\omega }} = {\rm{A}} + {\rm{B\omega }} [Equation (ii)]
So, A = 1 and B =1

So, option (B) is correct.

Note:
Conditions of cube root of unity ω3=1{{\rm{\omega }}^3} = 1 and 1+ω+ω2=01 + {\rm{\omega }} + {{\rm{\omega }}^2} = 0 are necessary to solve this type of questions. Substitute the values using the conditions to form equations.