Solveeit Logo

Question

Question: If \(\Rightarrow\)then the general value of \(\theta = n\pi + \frac{\pi}{2} - \alpha\)is ....

If \Rightarrowthen the general value of θ=nπ+π2α\theta = n\pi + \frac{\pi}{2} - \alphais .

A

3(sinθcosθ)=4sinθcosθ3(\sin\theta - \cos\theta) = 4\sin\theta\cos\theta

B

3(sinθcosθ)=2sin2θ3(\sin\theta - \cos\theta) = 2\sin 2\theta

C

9(1S)=4S2,9(1 - S) = 4S^{2},

D

S=sin2θS = \sin 2\theta

Answer

3(sinθcosθ)=2sin2θ3(\sin\theta - \cos\theta) = 2\sin 2\theta

Explanation

Solution

\Rightarrow

θ+π4=2nπ±0θ=2nππ4\theta + \frac{\pi}{4} = 2n\pi \pm 0 \Rightarrow \theta = 2n\pi - \frac{\pi}{4} 2tan2θ=sec2θ2tan2θ=tan2θ+12\tan^{2}\theta = \sec^{2}\theta \Rightarrow 2\tan^{2}\theta = \tan^{2}\theta + 1

\Rightarrow tan2θ=1=tan2(π4)θ=nπ±π4\tan^{2}\theta = 1 = \tan^{2}\left( \frac{\pi}{4} \right) \Rightarrow \theta = n\pi \pm \frac{\pi}{4}

Since 2sinθ+tanθ=02\sin\theta + \tan\theta = 0, hence sinθ(2+1cosθ)=0\sin\theta\left( 2 + \frac{1}{\cos\theta} \right) = 0 is ruled out

sinθ=0θ=nπ\sin\theta = 0 \Rightarrow \theta = n\pi cosθ=1+32=12=cos(π3)\cos \theta = - 1 + \frac { 3 } { 2 } = \frac { 1 } { 2 } = \cos \left( \frac { \pi } { 3 } \right) 3tan2θ+3tan3θ+tan2θtan3θ=1\sqrt{3}\tan 2\theta + \sqrt{3}\tan 3\theta + \tan 2\theta\tan 3\theta = 1 \Rightarrow.