Solveeit Logo

Question

Question: If \(\Rightarrow\), then the general value of \(\theta - \frac{\pi}{12} = 2n\pi \pm \frac{\pi}{4} \R...

If \Rightarrow, then the general value of θπ12=2nπ±π4θ=2nπ±π4+π12\theta - \frac{\pi}{12} = 2n\pi \pm \frac{\pi}{4} \Rightarrow \theta = 2n\pi \pm \frac{\pi}{4} + \frac{\pi}{12} is.

A

tan3x=1tan3x=tanπ4\tan 3x = 1 \Rightarrow \tan 3x = \tan\frac{\pi}{4}

B

3x=nπ+π4\Rightarrow 3x = n\pi + \frac{\pi}{4}

C

\Rightarrow

D

x=nπ3+π12x = \frac{n\pi}{3} + \frac{\pi}{12}

Answer

\Rightarrow

Explanation

Solution

cosθ=(5/2)±(25/4)42=5±34\cos\theta = \frac{(5/2) \pm \sqrt{(25/4) - 4}}{2} = \frac{5 \pm 3}{4}, also \Rightarrow

cosθ=12=cos(π3)θ=2nπ±π3\cos\theta = \frac{1}{2} = \cos\left( \frac{\pi}{3} \right) \Rightarrow \theta = 2n\pi \pm \frac{\pi}{3} cotθ+tanθ=2 cosecθ\cot\theta + \tan\theta = 2\text{ cosec}\theta.