Solveeit Logo

Question

Question: If $\{.\}$ represents the fractional part function, then the value of $\int_{0}^{1000} e^{\{x\}} dx$...

If {.}\{.\} represents the fractional part function, then the value of 01000e{x}dx\int_{0}^{1000} e^{\{x\}} dx is equal to ____.

A

1000e - 1

B

1000e

C

1000 (e - 1)

D

none of these

Answer

1000 (e - 1)

Explanation

Solution

To evaluate the integral 01000e{x}dx\int_{0}^{1000} e^{\{x\}} dx, we use the properties of the fractional part function and definite integrals.

The fractional part function {x}\{x\} is defined as {x}=xx\{x\} = x - \lfloor x \rfloor, where x\lfloor x \rfloor is the greatest integer less than or equal to xx. The function {x}\{x\} is periodic with a period of 1. This means {x+1}={x}\{x+1\} = \{x\}. Consequently, the function f(x)=e{x}f(x) = e^{\{x\}} is also periodic with a period of 1. e{x+1}=e{(x+1)x+1}=e{x+1(x+1)}=e{xx}=e{x}e^{\{x+1\}} = e^{\{(x+1) - \lfloor x+1 \rfloor\}} = e^{\{x+1 - (\lfloor x \rfloor + 1)\}} = e^{\{x - \lfloor x \rfloor\}} = e^{\{x\}}.

For a periodic function f(x)f(x) with period TT, the property of definite integrals states that 0nTf(x)dx=n0Tf(x)dx\int_{0}^{nT} f(x) dx = n \int_{0}^{T} f(x) dx. In this problem, f(x)=e{x}f(x) = e^{\{x\}}, the period T=1T=1, and the upper limit of integration is 1000, which can be written as 1000×11000 \times 1. So, n=1000n=1000.

Applying this property:

01000e{x}dx=100001e{x}dx\int_{0}^{1000} e^{\{x\}} dx = 1000 \int_{0}^{1} e^{\{x\}} dx

Now, we need to evaluate the integral over one period, i.e., 01e{x}dx\int_{0}^{1} e^{\{x\}} dx. For x[0,1)x \in [0, 1), the fractional part {x}\{x\} is simply equal to xx. So, the integral becomes:

01e{x}dx=01exdx\int_{0}^{1} e^{\{x\}} dx = \int_{0}^{1} e^{x} dx

This is a standard integral:

01exdx=[ex]01=e1e0=e1\int_{0}^{1} e^{x} dx = [e^x]_{0}^{1} = e^1 - e^0 = e - 1

Substitute this result back into the main expression:

01000e{x}dx=1000(e1)\int_{0}^{1000} e^{\{x\}} dx = 1000 (e - 1)