Question
Question: If range of the function $f(x) = (\cos^{-1} \frac{x}{2})^2 + \pi \sin^{-1} \frac{x}{2} - (\sin^{-1} ...
If range of the function f(x)=(cos−12x)2+πsin−12x−(sin−12x)2+12π2(x2+6x+8) is [aπ2,bπ2], then find the value of 2(a+b).

Answer
5
Explanation
Solution
The domain of f(x) is [−2,2]. Using cos−12x=2π−sin−12x, the function simplifies to f(x)=4π2+12π2(x2+6x+8). Let g(x)=x2+6x+8. On [−2,2], g(x) is increasing, with range [g(−2),g(2)]=[0,24]. The range of f(x) is [4π2+12π2(0),4π2+12π2(24)]=[4π2,49π2]. Comparing with [aπ2,bπ2], we get a=41 and b=49. Therefore, 2(a+b)=2(41+49)=5.
