Solveeit Logo

Question

Question: If range of the function $f(x) = (\cos^{-1} \frac{x}{2})^2 + \pi \sin^{-1} \frac{x}{2} - (\sin^{-1} ...

If range of the function f(x)=(cos1x2)2+πsin1x2(sin1x2)2+π212(x2+6x+8)f(x) = (\cos^{-1} \frac{x}{2})^2 + \pi \sin^{-1} \frac{x}{2} - (\sin^{-1} \frac{x}{2})^2 + \frac{\pi^2}{12}(x^2 + 6x + 8) is [aπ2,bπ2][a\pi^2, b\pi^2], then find the value of 2(a+b)2(a+b).

Answer

5

Explanation

Solution

The domain of f(x)f(x) is [2,2][-2, 2]. Using cos1x2=π2sin1x2\cos^{-1} \frac{x}{2} = \frac{\pi}{2} - \sin^{-1} \frac{x}{2}, the function simplifies to f(x)=π24+π212(x2+6x+8)f(x) = \frac{\pi^2}{4} + \frac{\pi^2}{12}(x^2 + 6x + 8). Let g(x)=x2+6x+8g(x) = x^2 + 6x + 8. On [2,2][-2, 2], g(x)g(x) is increasing, with range [g(2),g(2)]=[0,24][g(-2), g(2)] = [0, 24]. The range of f(x)f(x) is [π24+π212(0),π24+π212(24)]=[π24,9π24][\frac{\pi^2}{4} + \frac{\pi^2}{12}(0), \frac{\pi^2}{4} + \frac{\pi^2}{12}(24)] = [\frac{\pi^2}{4}, \frac{9\pi^2}{4}]. Comparing with [aπ2,bπ2][a\pi^2, b\pi^2], we get a=14a = \frac{1}{4} and b=94b = \frac{9}{4}. Therefore, 2(a+b)=2(14+94)=52(a+b) = 2(\frac{1}{4} + \frac{9}{4}) = 5.