Solveeit Logo

Question

Question: If r1,r2 and r3 are three values of r which satisfy the equation ∫π/20(sinx+rcosx)3dx−4rπ−2∫π/20xcos...

If r1,r2 and r3 are three values of r which satisfy the equation ∫π/20(sinx+rcosx)3dx−4rπ−2∫π/20xcosxdx=2 then the value of 47(r21+r22+r23) is equal to

Answer

47(12π - 3/4)

Explanation

Solution

Let the given equation be

0π/2(sinx+rcosx)3dx4rπ20π/2xcosxdx=2\int_{0}^{\pi/2} (\sin x + r \cos x)^3 dx - 4r\pi - 2 \int_{0}^{\pi/2} x \cos x dx = 2

First, evaluate the integral I1=0π/2(sinx+rcosx)3dxI_1 = \int_{0}^{\pi/2} (\sin x + r \cos x)^3 dx.
Expand the integrand:
(sinx+rcosx)3=sin3x+3sin2x(rcosx)+3sinx(rcosx)2+(rcosx)3(\sin x + r \cos x)^3 = \sin^3 x + 3 \sin^2 x (r \cos x) + 3 \sin x (r \cos x)^2 + (r \cos x)^3
=sin3x+3rsin2xcosx+3r2sinxcos2x+r3cos3x= \sin^3 x + 3r \sin^2 x \cos x + 3r^2 \sin x \cos^2 x + r^3 \cos^3 x

Integrate term by term from 0 to π/2\pi/2:
0π/2sin3xdx=0π/2(1cos2x)sinxdx\int_{0}^{\pi/2} \sin^3 x dx = \int_{0}^{\pi/2} (1-\cos^2 x) \sin x dx. Let u=cosxu = \cos x, du=sinxdxdu = -\sin x dx.
When x=0,u=1x=0, u=1. When x=π/2,u=0x=\pi/2, u=0.
10(1u2)(du)=01(1u2)du=[uu33]01=113=23\int_{1}^{0} (1-u^2)(-du) = \int_{0}^{1} (1-u^2)du = [u - \frac{u^3}{3}]_{0}^{1} = 1 - \frac{1}{3} = \frac{2}{3}.

0π/23rsin2xcosxdx\int_{0}^{\pi/2} 3r \sin^2 x \cos x dx. Let u=sinxu = \sin x, du=cosxdxdu = \cos x dx.
When x=0,u=0x=0, u=0. When x=π/2,u=1x=\pi/2, u=1.
013ru2du=[ru3]01=r(1303)=r\int_{0}^{1} 3r u^2 du = [r u^3]_{0}^{1} = r(1^3 - 0^3) = r.

0π/23r2sinxcos2xdx\int_{0}^{\pi/2} 3r^2 \sin x \cos^2 x dx. Let u=cosxu = \cos x, du=sinxdxdu = -\sin x dx.
When x=0,u=1x=0, u=1. When x=π/2,u=0x=\pi/2, u=0.
103r2u2(du)=013r2u2du=[r2u3]01=r2(1303)=r2\int_{1}^{0} 3r^2 u^2 (-du) = \int_{0}^{1} 3r^2 u^2 du = [r^2 u^3]_{0}^{1} = r^2(1^3 - 0^3) = r^2.

0π/2r3cos3xdx=0π/2r3(1sin2x)cosxdx\int_{0}^{\pi/2} r^3 \cos^3 x dx = \int_{0}^{\pi/2} r^3 (1-\sin^2 x) \cos x dx. Let u=sinxu = \sin x, du=cosxdxdu = \cos x dx.
When x=0,u=0x=0, u=0. When x=π/2,u=1x=\pi/2, u=1.
01r3(1u2)du=r3[uu33]01=r3(113)=23r3\int_{0}^{1} r^3 (1-u^2) du = r^3 [u - \frac{u^3}{3}]_{0}^{1} = r^3 (1 - \frac{1}{3}) = \frac{2}{3} r^3.

So, I1=23+r+r2+23r3I_1 = \frac{2}{3} + r + r^2 + \frac{2}{3} r^3.

Next, evaluate the integral I2=0π/2xcosxdxI_2 = \int_{0}^{\pi/2} x \cos x dx using integration by parts, udv=uvvdu\int u dv = uv - \int v du.
Let u=xu = x, dv=cosxdxdv = \cos x dx. Then du=dxdu = dx, v=sinxv = \sin x.
I2=[xsinx]0π/20π/2sinxdxI_2 = [x \sin x]_{0}^{\pi/2} - \int_{0}^{\pi/2} \sin x dx
I2=(π2sinπ20sin0)[cosx]0π/2I_2 = (\frac{\pi}{2} \sin \frac{\pi}{2} - 0 \sin 0) - [-\cos x]_{0}^{\pi/2}
I2=(π2×10)(cosπ2(cos0))I_2 = (\frac{\pi}{2} \times 1 - 0) - (-\cos \frac{\pi}{2} - (-\cos 0))
I2=π2(0(1))=π21I_2 = \frac{\pi}{2} - (0 - (-1)) = \frac{\pi}{2} - 1.

Substitute the values of I1I_1 and I2I_2 into the given equation:
(23+r+r2+23r3)4rπ2(π21)=2(\frac{2}{3} + r + r^2 + \frac{2}{3} r^3) - 4r\pi - 2 (\frac{\pi}{2} - 1) = 2
23+r+r2+23r34rπ(π2)=2\frac{2}{3} + r + r^2 + \frac{2}{3} r^3 - 4r\pi - (\pi - 2) = 2
23+r+r2+23r34rππ+2=2\frac{2}{3} + r + r^2 + \frac{2}{3} r^3 - 4r\pi - \pi + 2 = 2
23+r+r2+23r34rππ=0\frac{2}{3} + r + r^2 + \frac{2}{3} r^3 - 4r\pi - \pi = 0
Multiply the entire equation by 3 to eliminate the fraction:
2+3r+3r2+2r312rπ3π=02 + 3r + 3r^2 + 2r^3 - 12r\pi - 3\pi = 0
Rearrange the terms to form a cubic equation in rr:
2r3+3r2+(312π)r+(23π)=02r^3 + 3r^2 + (3 - 12\pi)r + (2 - 3\pi) = 0.

The problem states that r1,r2,r3r_1, r_2, r_3 are three values of rr which satisfy this equation. Thus, r1,r2,r3r_1, r_2, r_3 are the roots of the cubic equation 2r3+3r2+(312π)r+(23π)=02r^3 + 3r^2 + (3 - 12\pi)r + (2 - 3\pi) = 0.

For a cubic equation ax3+bx2+cx+d=0ax^3 + bx^2 + cx + d = 0 with roots r1,r2,r3r_1, r_2, r_3, Vieta's formulas give the following relationships:
Sum of roots: r1+r2+r3=bar_1 + r_2 + r_3 = -\frac{b}{a}
Sum of products of roots taken two at a time: r1r2+r2r3+r3r1=car_1 r_2 + r_2 r_3 + r_3 r_1 = \frac{c}{a}

In our equation, a=2a=2, b=3b=3, c=312πc=3 - 12\pi, and d=23πd=2 - 3\pi.
So, the sum of the roots is r1+r2+r3=32r_1 + r_2 + r_3 = -\frac{3}{2}.
The sum of the products of the roots taken two at a time is r1r2+r2r3+r3r1=312π2r_1 r_2 + r_2 r_3 + r_3 r_1 = \frac{3 - 12\pi}{2}.

We need to find the value of r12+r22+r32r_1^2 + r_2^2 + r_3^2. We use the identity:
(r1+r2+r3)2=r12+r22+r32+2(r1r2+r2r3+r3r1)(r_1 + r_2 + r_3)^2 = r_1^2 + r_2^2 + r_3^2 + 2(r_1 r_2 + r_2 r_3 + r_3 r_1)
Rearranging the identity to solve for the sum of squares:
r12+r22+r32=(r1+r2+r3)22(r1r2+r2r3+r3r1)r_1^2 + r_2^2 + r_3^2 = (r_1 + r_2 + r_3)^2 - 2(r_1 r_2 + r_2 r_3 + r_3 r_1)

Substitute the values from Vieta's formulas:
r12+r22+r32=(32)22(312π2)r_1^2 + r_2^2 + r_3^2 = \left(-\frac{3}{2}\right)^2 - 2\left(\frac{3 - 12\pi}{2}\right)
r12+r22+r32=94(312π)r_1^2 + r_2^2 + r_3^2 = \frac{9}{4} - (3 - 12\pi)
r12+r22+r32=943+12πr_1^2 + r_2^2 + r_3^2 = \frac{9}{4} - 3 + 12\pi
r12+r22+r32=34+12πr_1^2 + r_2^2 + r_3^2 = -\frac{3}{4} + 12\pi.

The question asks for the value of 47(r12+r22+r32)47(r_1^2 + r_2^2 + r_3^2).
47(r12+r22+r32)=47(34+12π)47(r_1^2 + r_2^2 + r_3^2) = 47\left(-\frac{3}{4} + 12\pi\right)
47(r12+r22+r32)=1414+564π47(r_1^2 + r_2^2 + r_3^2) = -\frac{141}{4} + 564\pi.

Thus,

47(r12+r22+r32)=47(12π34)47(r_1^2 + r_2^2 + r_3^2) = 47(12\pi - \frac{3}{4})