Question
Question: If r1,r2 and r3 are three values of r which satisfy the equation ∫π/20(sinx+rcosx)3dx−4rπ−2∫π/20xcos...
If r1,r2 and r3 are three values of r which satisfy the equation ∫π/20(sinx+rcosx)3dx−4rπ−2∫π/20xcosxdx=2 then the value of 47(r21+r22+r23) is equal to
47(12π - 3/4)
Solution
Let the given equation be
∫0π/2(sinx+rcosx)3dx−4rπ−2∫0π/2xcosxdx=2First, evaluate the integral I1=∫0π/2(sinx+rcosx)3dx.
Expand the integrand:
(sinx+rcosx)3=sin3x+3sin2x(rcosx)+3sinx(rcosx)2+(rcosx)3
=sin3x+3rsin2xcosx+3r2sinxcos2x+r3cos3x
Integrate term by term from 0 to π/2:
∫0π/2sin3xdx=∫0π/2(1−cos2x)sinxdx. Let u=cosx, du=−sinxdx.
When x=0,u=1. When x=π/2,u=0.
∫10(1−u2)(−du)=∫01(1−u2)du=[u−3u3]01=1−31=32.
∫0π/23rsin2xcosxdx. Let u=sinx, du=cosxdx.
When x=0,u=0. When x=π/2,u=1.
∫013ru2du=[ru3]01=r(13−03)=r.
∫0π/23r2sinxcos2xdx. Let u=cosx, du=−sinxdx.
When x=0,u=1. When x=π/2,u=0.
∫103r2u2(−du)=∫013r2u2du=[r2u3]01=r2(13−03)=r2.
∫0π/2r3cos3xdx=∫0π/2r3(1−sin2x)cosxdx. Let u=sinx, du=cosxdx.
When x=0,u=0. When x=π/2,u=1.
∫01r3(1−u2)du=r3[u−3u3]01=r3(1−31)=32r3.
So, I1=32+r+r2+32r3.
Next, evaluate the integral I2=∫0π/2xcosxdx using integration by parts, ∫udv=uv−∫vdu.
Let u=x, dv=cosxdx. Then du=dx, v=sinx.
I2=[xsinx]0π/2−∫0π/2sinxdx
I2=(2πsin2π−0sin0)−[−cosx]0π/2
I2=(2π×1−0)−(−cos2π−(−cos0))
I2=2π−(0−(−1))=2π−1.
Substitute the values of I1 and I2 into the given equation:
(32+r+r2+32r3)−4rπ−2(2π−1)=2
32+r+r2+32r3−4rπ−(π−2)=2
32+r+r2+32r3−4rπ−π+2=2
32+r+r2+32r3−4rπ−π=0
Multiply the entire equation by 3 to eliminate the fraction:
2+3r+3r2+2r3−12rπ−3π=0
Rearrange the terms to form a cubic equation in r:
2r3+3r2+(3−12π)r+(2−3π)=0.
The problem states that r1,r2,r3 are three values of r which satisfy this equation. Thus, r1,r2,r3 are the roots of the cubic equation 2r3+3r2+(3−12π)r+(2−3π)=0.
For a cubic equation ax3+bx2+cx+d=0 with roots r1,r2,r3, Vieta's formulas give the following relationships:
Sum of roots: r1+r2+r3=−ab
Sum of products of roots taken two at a time: r1r2+r2r3+r3r1=ac
In our equation, a=2, b=3, c=3−12π, and d=2−3π.
So, the sum of the roots is r1+r2+r3=−23.
The sum of the products of the roots taken two at a time is r1r2+r2r3+r3r1=23−12π.
We need to find the value of r12+r22+r32. We use the identity:
(r1+r2+r3)2=r12+r22+r32+2(r1r2+r2r3+r3r1)
Rearranging the identity to solve for the sum of squares:
r12+r22+r32=(r1+r2+r3)2−2(r1r2+r2r3+r3r1)
Substitute the values from Vieta's formulas:
r12+r22+r32=(−23)2−2(23−12π)
r12+r22+r32=49−(3−12π)
r12+r22+r32=49−3+12π
r12+r22+r32=−43+12π.
The question asks for the value of 47(r12+r22+r32).
47(r12+r22+r32)=47(−43+12π)
47(r12+r22+r32)=−4141+564π.
Thus,
47(r12+r22+r32)=47(12π−43)