Solveeit Logo

Question

Question: If \(R\to R\) be a function we sat that f has Property 1: If \[\displaystyle \lim_{h \to 0},\dfra...

If RRR\to R be a function we sat that f has
Property 1: If limh0,f(h)f(0)h\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} exists and is finite.
Property 2: If limh0,f(h)f(0)h2\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}} exists and is finite.
Then, which of the following options is/are correct.

& A.f\left( x \right)={{x}^{\dfrac{2}{3}}}\text{ has property 1} \\\ & \text{B}\text{.f}\left( x \right)=\sin x\text{ has property 2} \\\ & \text{C}\text{.f}\left( x \right)=\left| x \right|\text{ has property 1} \\\ & \text{D}\text{.f}\left( x \right)=x\left| x \right|\text{ has property 2} \\\ \end{aligned}$$
Explanation

Solution

To solve this question, we will consider all options separately and check which one of them satisfy property 1 or 2. Also, in mid of solution we will use the fact that, if limh0,hmhn and m n\displaystyle \lim_{h \to 0},\dfrac{{{h}^{m}}}{{{h}^{n}}}\text{ and m n} then limh0,hmhn=0\displaystyle \lim_{h \to 0},\dfrac{{{h}^{m}}}{{{h}^{n}}}=0 and if < n\text{m }<\text{ n} then limh0,hmhn = 10 = \displaystyle \lim_{h \to 0},\dfrac{{{h}^{m}}}{{{h}^{n}}}\text{ }=\text{ }\dfrac{1}{0}\text{ }=\text{ }\infty does not exist.
While calculating options having sin x we will use formula of limit with sin which is given as limh0,sinxx =1\displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}\text{ }=1

Complete step-by-step answer:
Given,
Property 1: If limh0, f(h)f(0)h\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} exists and is finite.
Property 2: If limh0, f(h)f(0)h2\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}} exists and is finite.
To solve this question, we will consider all options one by one and see which one is correct.
Consider option A.
A. f(x)=x23f\left( x \right)={{x}^{\dfrac{2}{3}}} has property 1.
Let us compute limh0, f(h)f(0)h\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} for f(x)=x23f\left( x \right)={{x}^{\dfrac{2}{3}}}
Substituting f(h)=h23f\left( h \right)={{h}^{\dfrac{2}{3}}} in above we get:
limh0, f(h)f(0)h\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} and f(0) = 0 so we have
limh0, h230hlimh0, h23h\displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}
Now,
h=h12limh0, h23h12\sqrt{h}={{h}^{\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}}
Now because 23 > 12\dfrac{2}{3}\text{ }>\text{ }\dfrac{1}{2}
So, power of numerator is bigger than power of denominator and as h 0h\text{ }\to 0 so whether h 0+h 0h\text{ }\to {{0}^{+}}\Rightarrow h\text{ }\to {{0}^{-}} the numerator of h23h12\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left| h \right|}^{\dfrac{1}{2}}}} is always greater than its denominator.
limh0, h23h=0\Rightarrow \displaystyle \lim_{h \to 0},\text{ }\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0 as we have a numerator bigger power.
So limh0, f(h)f(0)h\displaystyle \lim_{h \to 0},\text{ }\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} exist and is finite for f(x)=x23f\left( x \right)={{x}^{\dfrac{2}{3}}}
So, option A is correct.
A. f(x)=x23f\left( x \right)={{x}^{\dfrac{2}{3}}} has property 1.
Let us compute limh0,f(h)f(0)h\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} for f(x)=x23f\left( x \right)={{x}^{\dfrac{2}{3}}}
Substituting f(h)=h23f\left( h \right)={{h}^{\dfrac{2}{3}}} in above we get:
limh0,f(h)f(0)h\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} and f(0) = 0 so we have

& \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}-0}{\sqrt{\left| h \right|}} \\\ & \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}} \\\ \end{aligned}$$ Now, $$\begin{aligned} & \sqrt{h}={{h}^{\dfrac{1}{2}}} \\\ & \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}} \\\ \end{aligned}$$ Now because $\dfrac{2}{3}>\dfrac{1}{2}$ So, power of numerator is bigger than power of denominator and as $h\to 0$ so whether $h\to {{0}^{+}}\Rightarrow h\to {{0}^{-}}$ the numerator of $\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}$ is always greater than its denominator. $$\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{\sqrt{\left| h \right|}}=0$$ as we have a numerator bigger power. So $$\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}$$ exist and is finite for $f\left( x \right)={{x}^{\dfrac{2}{3}}}$ So, option A is correct. Consider option B. B. f(x) = sin x has property 2. We have, property 2 has $$\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}$$ Substituting f(h) = sin h in above and f(0) = sin 0 =0 we get: $$\begin{aligned} & \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}} \\\ & \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -\sin 0 \right)}{{{h}^{2}}} \\\ & \displaystyle \lim_{h \to 0},\dfrac{\left( \sinh -0 \right)}{{{h}^{2}}} \\\ \end{aligned}$$ Taking $\dfrac{1}{h}$ common we get: $$\displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right)$$ Now, we will apply property of product of limit which says $\lim \left( ab \right)=\lim a\cdot \lim b$ $$\begin{aligned} & \displaystyle \lim_{h \to 0},\dfrac{1}{h}\left( \dfrac{\sinh }{h} \right) \\\ & \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right) \\\ \end{aligned}$$v Again, we will use property of limit of sin which says: $$\begin{aligned} & \displaystyle \lim_{h \to 0},\dfrac{\sin x}{x}=1 \\\ & \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\left( \displaystyle \lim_{h \to 0},\dfrac{\sinh }{h} \right)=\left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)\text{ }\text{. }\text{. }\text{. }\text{. }\text{. }\text{. (i)} \\\ & \Rightarrow \left( \displaystyle \lim_{h \to 0},\dfrac{1}{h} \right)=\dfrac{1}{0}=\infty \\\ \end{aligned}$$ So, this limit doesn't exist. Hence, option B is wrong. Consider option C. C. $f\left( x \right)=\left| x \right|$ has property 1. Consider $$\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}$$ and substituting $f\left( x \right)=\left| x \right|$ in above we get: $$\begin{aligned} & \displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}} \\\ & \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|-0}{\sqrt{\left| h \right|}} \\\ \end{aligned}$$ Again using $$\begin{aligned} & \sqrt{h}={{h}^{\dfrac{1}{2}}} \\\ & \displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}} \\\ \end{aligned}$$ Observing we have power of $\left| h \right|$ in numerator is 1 and power of $\left| h \right|$ in denominator is $\dfrac{1}{2}$ and $1>\dfrac{1}{2}$ Numerator is bigger in $$\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}$$ than denominator. $$\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=0$$ which is a finite number. So, $$\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{\sqrt{\left| h \right|}}$$ exist and is finite for $f\left( x \right)=\left| x \right|$ So option C is correct. Consider option D. D. $f\left( x \right)=x\left| x \right|$ has property 2. Consider $$\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}$$ Applying $f\left( x \right)=h\left| h \right|$ in above we get: $$\displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}$$ When $h>0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{{{h}^{2}}}{{{h}^{2}}}=1$ And when $h<0\Rightarrow \displaystyle \lim_{h \to 0},\dfrac{h\left| h \right|-0}{{{h}^{2}}}=\displaystyle \lim_{h \to 0},\dfrac{-{{h}^{2}}}{{{h}^{2}}}=-1$ This is so because $\left| x \right|=x$ when $x>0$ and $\left| x \right|=-x$ when $x<0$ So, when $h\to {{0}^{+}}$ then $$\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=+1$$ And when $h\to {{0}^{-}}$ then $$\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}=-1$$ So, we have two different values, so $$\displaystyle \lim_{h \to 0},\dfrac{f\left( h \right)-f\left( 0 \right)}{{{h}^{2}}}$$ doesn't exist when $f\left( x \right)=x\left| x \right|$ So, option D is wrong. **So, the correct answers are “Option A and C”.** **Note:** While considering $$\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}$$ in option C we can also go for another method which is as below: $$\displaystyle \lim_{h \to 0},\dfrac{\left| h \right|}{{{\left| h \right|}^{\dfrac{1}{2}}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}$$ This is so as $\dfrac{{{a}^{m}}}{{{a}^{n}}}{{a}^{m-n}}$ $$\displaystyle \lim_{h \to 0},{{\left| h \right|}^{1-\dfrac{1}{2}}}=\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}$$ So, after we apply limit $$\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{2}}}=0$$ Similarly, in option A we have $$\displaystyle \lim_{h \to 0},\dfrac{{{h}^{\dfrac{2}{3}}}}{{{\left( \left| h \right| \right)}^{\dfrac{1}{2}}}}$$ $$\displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{2}{3}-\dfrac{1}{2}}}\Rightarrow \displaystyle \lim_{h \to 0},{{\left| h \right|}^{\dfrac{1}{6}}}$$ Which is anyway 0.