Solveeit Logo

Question

Question: If r satisfies the equation \(r \times \left( {i + 2j + k} \right) = i - k\), then for any scalar \(...

If r satisfies the equation r×(i+2j+k)=ikr \times \left( {i + 2j + k} \right) = i - k, then for any scalar α\alpha , r is equal to

A. i+α(i+2j+k) B. j+α(i+2j+k) C. k+α(i+2j+k) D. ik+α(i+2j+k)  A.{\text{ }}i + \alpha \left( {i + 2j + k} \right) \\\ B.{\text{ j}} + \alpha \left( {i + 2j + k} \right) \\\ C.{\text{ k}} + \alpha \left( {i + 2j + k} \right) \\\ D.{\text{ }}i - k + \alpha \left( {i + 2j + k} \right) \\\
Explanation

Solution

Hint: In this question assume r=αi+βj+λkr = \alpha i + \beta j + \lambda k and then apply a cross product to reach the solution of the problem.

Complete step-by-step answer:
Let r=αi+βj+λkr = \alpha i + \beta j + \lambda k…………….. (1)
Now given equation is
r×(i+2j+k)=ikr \times \left( {i + 2j + k} \right) = i - k
So, first find out the value of
r×(i+2j+k)r \times \left( {i + 2j + k} \right)
r×(i+2j+k)=(αi+βj+λk)×(i+2j+k)\Rightarrow r \times \left( {i + 2j + k} \right) = \left( {\alpha i + \beta j + \lambda k} \right) \times \left( {i + 2j + k} \right)
Now, apply cross product property we have,
\Rightarrow r \times \left( {i + 2j + k} \right) = \left| {\begin{array}{*{20}{c}} i&j;&k; \\\ \alpha &\beta &\lambda \\\ 1&2&1 \end{array}} \right| = i\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right)
Now the above value is equal to
i(β2λ)j(αλ)+k(2αβ)=iki\left( {\beta - 2\lambda } \right) - j\left( {\alpha - \lambda } \right) + k\left( {2\alpha - \beta } \right) = i - k
So on comparing the terms i, j, ki,{\text{ j, k}} we have
(β2λ)\left( {\beta - 2\lambda } \right) = 1, (αλ)\left( {\alpha - \lambda } \right) = 0, (2αβ)\left( {2\alpha - \beta } \right) = -1
β=1+2λ, α=λ, β=1+2α\Rightarrow \beta = 1 + 2\lambda ,{\text{ }}\alpha = \lambda ,{\text{ }}\beta = 1 + 2\alpha
So, from equation (1) we have,
r=αi+βj+λkr = \alpha i + \beta j + \lambda k, substitute the value of β\beta and λ\lambda in this equation we have,
r=αi+(1+2α)j+αk\Rightarrow r = \alpha i + \left( {1 + 2\alpha } \right)j + \alpha k
r=j+α(i+2j+k)\Rightarrow r = j + \alpha \left( {i + 2j + k} \right), for any scalar α\alpha .
Hence, option (b) is correct.

Note: In such types of questions first assume r as above then apply cross product as above, then compare the value of cross product with the given value and find out the values of α, βλ\alpha ,{\text{ }}\beta {\text{, }}\lambda , then substitute the value of β\beta and λ\lambda in terms of α\alpha in r we will get the required r for any scaler α\alpha .