Solveeit Logo

Question

Mathematics Question on Matrices

If R(t)=[costsint sintcost]R\left(t\right) = \begin{bmatrix}\cos t&\sin t\\\ -\sin t&\cos t\end{bmatrix}, then R(s) R(t) equals

A

R (s + t)

B

R (s - t)

C

R(s) + R(t)

D

None of these

Answer

R (s + t)

Explanation

Solution

R(s)R(t)=[cosssins sinscoss]×[costsint sintcost]R\left(s\right) R\left(t\right) = \begin{bmatrix}\cos s&\sin s\\\ -\sin s& \cos s\end{bmatrix} \times\begin{bmatrix}\cos t&\sin t\\\ -\sin t&\cos t\end{bmatrix}
=[cosscostsinssintcosssint+sinscost sinscostcosssintsinssint+cosscost]= \begin{bmatrix}\cos s \cos t -\sin s \sin t&\cos s \sin t + \sin s \cos t\\\ -\sin s \cos t -\cos s \sin t& -\sin s \sin t +\cos s \cos t\end{bmatrix}
=[cos(s+t)sin(s+t) sin(s+t)cos(s+t)]=R(s+t)= \begin{bmatrix}\cos\left(s+t\right)&\sin\left(s+t\right)\\\ -\sin\left(s+t\right)&\cos\left(s+t\right)\end{bmatrix}=R\left(s+t\right)