Solveeit Logo

Question

Question: If R is the radius of the circumcircle of the \(\triangle A B C\) and \(\Delta\) is its area, then...

If R is the radius of the circumcircle of the ABC\triangle A B C and Δ\Delta is its area, then

A

R=a+b+cΔR = \frac { a + b + c } { \Delta }

B

R=a+b+c4ΔR = \frac { a + b + c } { 4 \Delta }

C

R=abc4ΔR = \frac { a b c } { 4 \Delta }

D

R=abcΔR = \frac { a b c } { \Delta }

Answer

R=abc4ΔR = \frac { a b c } { 4 \Delta }

Explanation

Solution

Area of the triangle ABC(Δ)=bc2sinAA B C ( \Delta ) = \frac { b c } { 2 } \sin A. From the sine

formula, a=2RsinAa = 2 R \sin A or sinA=a2R\sin A = \frac { a } { 2 R }Δ=12bca2R=abc4R\Delta = \frac { 1 } { 2 } b c \cdot \frac { a } { 2 R } = \frac { a b c } { 4 R }

or R=abc4ΔR = \frac { a b c } { 4 \Delta } .