Solveeit Logo

Question

Question: If \(R\) is the horizontal range for an inclination and \(h\) is the maximum the height reached by t...

If RR is the horizontal range for an inclination and hh is the maximum the height reached by the projectile, then the maximum range is given by-
(A)R28h2h(A)\dfrac{{{R^2}}}{{8h}} - 2h
(B)R28h+2gh(B)\dfrac{{{R^2}}}{{8h}} + 2gh
(C)R28h+2h(C)\dfrac{{{R^2}}}{{8h}} + 2h
(D)R28h(D)\dfrac{{{R^2}}}{{8h}}

Explanation

Solution

Draw a clean diagram of projectile motion and clarify the vertical and horizontal motion of the object by dividing the initial velocity into two components.
Find the value of maximum height that the object will gain using the vertical equation of motion. Note that the final velocity in the highest point will be zero.
Use the formula of horizontal range. Note that the object will travel with a uniform velocity horizontally.
State a relation between the maximum height and maximum horizontal range. Note that the maximum horizontal range can be obtained by maximizing the sine of the angle.

Formula used:
From the equation of motion v2=u22gh \Rightarrow {v^2} = {u^2} - 2gh, we get
h=u2sin2θ2g\Rightarrow h = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}} , For the vertical motion the initial velocity usinθu\sin \theta
The horizontal distance R=ucosθ×TR = u\cos \theta \times T, the object travels with a uniform velocity ucosθu\cos \theta horizontally.
Where, T=2usinθgT = \dfrac{{2u\sin \theta }}{g}
Rmax=u2g{R_{\max }} = \dfrac{{{u^2}}}{g}

Complete step by step answer:

The initial velocity uu has two components along vertical and horizontal.
Here, usinθu\sin \theta is the vertical component and also, ucosθu\cos \theta is the horizontal component.
For the vertical motion the initial velocity usinθu\sin \theta
The final velocity, v=0v = 0
Then if the maximum height be hh,
Then, 0=(usinθ)22gh0 = {\left( {u\sin \theta } \right)^2} - 2gh [ from the equation of motion v2=u22gh \Rightarrow {v^2} = {u^2} - 2gh ]
h=u2sin2θ2g..............(1)\Rightarrow h = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}..............(1)

Now the horizontal range be RR
So at the time, TT the object will travel the horizontal distance RR
Since the object travels with a uniform velocity ucosθu\cos \theta horizontally and covers the distance RR,
Hence, R=ucosθ×TR = u\cos \theta \times T
Where, T=2usinθgT = \dfrac{{2u\sin \theta }}{g}
R=ucosθ×2usinθg\therefore R = u\cos \theta \times \dfrac{{2u\sin \theta }}{g}
R=u2sin2θg.............(2)\Rightarrow R = \dfrac{{{u^2}\sin 2\theta }}{g}.............(2)

Now, from eq (1)(1) and (2)(2) we get, hR=sin2θ2sin2θ\dfrac{h}{R} = \dfrac{{{{\sin }^2}\theta }}{{2\sin 2\theta }}
hR=sin2θ4sinθcosθ\Rightarrow \dfrac{h}{R} = \dfrac{{{{\sin }^2}\theta }}{{4\sin \theta \cos \theta }}
hR=sinθ4cosθ\Rightarrow \dfrac{h}{R} = \dfrac{{\sin \theta }}{{4\cos \theta }}
hR=14tanθ\Rightarrow \dfrac{h}{R} = \dfrac{1}{4}\tan \theta
tanθ=4hR\Rightarrow \tan \theta = \dfrac{{4h}}{R}

Now if we draw a right angle triangle by taking θ\theta the acute angle, 4h4h be the perpendicular, and RRbe the base,
sinθ=4h16h2+R2\sin \theta = \dfrac{{4h}}{{\sqrt {16{h^2} + {R^2}} }}
Hence by putting the value of sinθ\sin \theta we get from eq. (1)(1), h=u2g×16h22(16h2+R2)..........(3) \Rightarrow h = \dfrac{{{u^2}}}{g} \times \dfrac{{16{h^2}}}{{2(16{h^2} + {R^2})}}..........(3)
When the value of sin2θ\sin 2\theta the highest, the horizontal range RR will also be highest,
since, the highest value of sin2θ=1\sin 2\theta = 1 , Rmax=u2g......(4){R_{\max }} = \dfrac{{{u^2}}}{g}......(4)
now, from eq. (3)(3) and (4)(4) we get,
h=Rmax×16h22(16h2+R2)\Rightarrow h = {R_{\max }} \times \dfrac{{16{h^2}}}{{2(16{h^2} + {R^2})}}
Rmax=2h(16h2+R2)16h2\Rightarrow {R_{\max }} = \dfrac{{2h(16{h^2} + {R^2})}}{{16{h^2}}}
Rmax=(16h2+R2)8h\Rightarrow {R_{\max }} = \dfrac{{(16{h^2} + {R^2})}}{{8h}}
Rmax=2h+R28h\Rightarrow {R_{\max }} = 2h + \dfrac{{{R^2}}}{{8h}}
So, the maximum range will be, Rmax=2h+R28h \Rightarrow {R_{\max }} = 2h + \dfrac{{{R^2}}}{{8h}}

Hence, the correct answer is option (C).

Note: The locus of a projectile is given by, y=xtanθg2u2cos2θx2y = x\tan \theta - \dfrac{g}{{2{u^2}{{\cos }^2}\theta }}{x^2}

This equation is the form of the equation of a parabola, y=ax+bx2y = ax + b{x^2}
So, the locus of a projectile is Parabolic.