Solveeit Logo

Question

Quantitative Ability and Data Interpretation Question on Algebra

If Rc=m×ln(1+Rmm)R_c = m \times \ln \left(1 + \frac{R_m}{m} \right) then RmR_m is equal to

A

Rm=ln(1+Rcm)R_m = \ln \left(1 + \frac{R_c}{m} \right)

B

Rm=ln(1+Rce)R_m = \ln \left(1 + \frac{R_c}{e} \right)

C

Rm=m(eRcm1)R_m = m \left( e^{\frac{R_c}{m}} - 1 \right)

D

Cannot be determined

Answer

Rm=m(eRcm1)R_m = m \left( e^{\frac{R_c}{m}} - 1 \right)

Explanation

Solution

Given the equation Rc=m×ln(1+Rmm)R_c = m \times \ln \left(1 + \frac{R_m}{m} \right), we need to solve for RmR_m.
1. Start by dividing both sides by mm:
Rcm=ln(1+Rmm)\frac{R_c}{m} = \ln \left(1 + \frac{R_m}{m} \right)
2. Exponentiate both sides to remove the natural logarithm:
eRcm=1+Rmme^{\frac{R_c}{m}} = 1 + \frac{R_m}{m}
3. Subtract 1 from both sides:
eRcm1=Rmme^{\frac{R_c}{m}} - 1 = \frac{R_m}{m}
4. Multiply both sides by mm to solve for RmR_m:
Rm=m(eRcm1)R_m = m \left( e^{\frac{R_c}{m}} - 1 \right)
Thus, the correct option is C: Rm=m(eRcm1)R_m = m \left( e^{\frac{R_c}{m}} - 1 \right).