Solveeit Logo

Question

Mathematics Question on Functions

If RR be a relation defined as aRbiffab>0aRb iff |a - b| > 0, then the relation is

A

reflexive

B

symmetric

C

transitive

D

symmetric and transitive

Answer

symmetric and transitive

Explanation

Solution

We observe the following properties :
Reflexivity - Let a be an arbitrary element.
Then,
aa=0>0aRa\left|a-a\right|=0 > 0 \Rightarrow a R a
This, R is not reflexive on R.
Symmetry - Let a and b be two distinct elements, then (a,b) \inR
ab>0ba>0\Rightarrow\left|a-b\right|>0\Rightarrow\quad\left|b-a\right|>0
(ab=ba)\quad\quad\quad \quad \quad \quad \left(\because \left|a-b\right|=\left|b-a\right|\right)
(b,a)R\Rightarrow \left(b,a\right)\in R
Thus, (a,b)R(b,a)R.\left(a, b\right) \in R \Rightarrow \left(b, a\right) \in R. So, R is symmetric.
Transitivity - Let (a,b)R\left(a, b\right) \in R and (b,c)R.\left(b, c\right) \in R.
Thenab>0\quad |a - b| > 0 and bc>0|b - c| > 0
ac>0(a,c)R\Rightarrow \quad\quad |a - c| > 0 \Rightarrow \left(a, c\right) \in R
So, R is transitive.