Solveeit Logo

Question

Question: If R and H represent horizontal range and maximum height of the projectile, then the angle of projec...

If R and H represent horizontal range and maximum height of the projectile, then the angle of projection with the horizontal is

A

tan1(HR)\tan^{- 1}\left( \frac{H}{R} \right)

B

tan1(2HR)\tan^{- 1}\left( \frac{2H}{R} \right)

C

tan1(4HR)\tan^{- 1}\left( \frac{4H}{R} \right)

D

tan1(4RH)\tan^{- 1}\left( \frac{4R}{H} \right)

Answer

tan1(4HR)\tan^{- 1}\left( \frac{4H}{R} \right)

Explanation

Solution

Maximum height, H=u2sin2θ2gH = \frac{u^{2}\sin^{2}\theta}{2g} ….. (i)

Horizontal range, R=u2sin2θg=2u2sinθcosθgR = \frac{u^{2}\sin 2\theta}{g} = \frac{2u^{2}\sin\theta\cos\theta}{g}..(ii)

Divide (i) by (ii), we get

HR=tanθ4\frac{H}{R} = \frac{\tan\theta}{4}ortanθ=4HRorθ=tan1(4HR)\tan\theta = \frac{4H}{R}or\theta = \tan^{- 1}\left( \frac{4H}{R} \right)