Question
Question: If R = (6 √6 + 14)<sup>2n + 1</sup> and f = R – [R], where [.] denotes the greatest integer function...
If R = (6 √6 + 14)2n + 1 and f = R – [R], where [.] denotes the greatest integer function then R. f =
A
(20)n
B
(20)2n
C
(20)2n + 1
D
None
Answer
(20)2n + 1
Explanation
Solution
R = (66+14)2n=1 =[R]+f=2n+1C0(6 6)2n+1 +......
– (66 – 14)2n+1 = f = 2n+1C0(66)2n+1 –.........
[R] + f – f ' = even Integer
Ž f – f ' = Integer
Ž f – f ' = 0
f = f '
Ž R. f = R f '
= (66+14)2n+1. (66 –14)2n+1
= (216 – 169)2n+1
= (20)2n+1