Solveeit Logo

Question

Question: If R = (6 √6 + 14)<sup>2n + 1</sup> and f = R – [R], where [.] denotes the greatest integer function...

If R = (6 √6 + 14)2n + 1 and f = R – [R], where [.] denotes the greatest integer function then R. f =

A

(20)n

B

(20)2n

C

(20)2n + 1

D

None

Answer

(20)2n + 1

Explanation

Solution

R = (66\sqrt{6}+14)2n=1 =[R]+f=2n+1C0(6 6\sqrt{6})2n+1 +......

– (66\sqrt{6} – 14)2n+1 = f = 2n+1C0(66\sqrt{6})2n+1 –.........

[R] + f – f ' = even Integer

Ž f – f ' = Integer

Ž f – f ' = 0

f = f '

Ž R. f = R f '

= (66\sqrt{6}+14)2n+1. (66\sqrt{6} –14)2n+1

= (216 – 169)2n+1

= (20)2n+1