Solveeit Logo

Question

Question: If \({{R}_{1}}\ and\ {{R}_{2}}\) be two equivalence relations on set A, prove that \({{R}_{1}}\cap {...

If R1 and R2{{R}_{1}}\ and\ {{R}_{2}} be two equivalence relations on set A, prove that R1R2{{R}_{1}}\cap {{R}_{2}} is also an equivalence relation on A.

Explanation

Solution

As R1 and R2{{R}_{1}}\ and\ {{R}_{2}} are equivalence relation on S. R1 and R2{{R}_{1}}\ and\ {{R}_{2}} will be symmetric, reflexive and transitive on S. Use these conditions to prove that (R1R2)\left( {{R}_{1}}\cap {{R}_{2}} \right) is also symmetric, reflexive and transitive and thus an equivalence relation on A.

Complete step-by-step answer:
Given, R1 and R2{{R}_{1}}\ and\ {{R}_{2}}are equivalence relations on set A.
A relation is called the equivalence relation, if it is reflexive, symmetric and transitive.
Since, R1{{R}_{1}} is a transitive relation.
(1) R1{{R}_{1}} is reflexive.
i.e. (a,a)R1 for all aA\left( a,a \right)\in {{R}_{1}}\ for\ all\ a\in A
(2) R1{{R}_{1}} is symmetric.
i.e. if (a,b)R1, then (b,a)R1;   a,bA\left( a,b \right)\in {{R}_{1}},\ then\ \left( b,a \right)\in {{R}_{1}};\ \ \ a,b\in A
(3) R1{{R}_{1}} is transitive.
i.e. if (a,b)R1, and (b,c)R1 then (a,c)R1;   a,b,cA\left( a,b \right)\in {{R}_{1}},\ and\ \left( b,c \right)\in {{R}_{1}}\ then\ \left( a,c \right)\in {{R}_{1}};\ \ \ a,b,c\in A
Similarly, R2{{R}_{2}} is also an equivalence relation. So,
(1) R2{{R}_{2}}is symmetric.
i.e. if (a,b)R then (b,a)R;  a,bA\left( a,b \right)\in R\ then\ \left( b,a \right)\in R;\ \ a,b\in A
(2) R2{{R}_{2}}is reflexive.
i.e. (a,a)R for all aA\left( a,a \right)\in R\ for\ all\ a\in A
(3) R2{{R}_{2}}is transitive.
i.e. if (a,b)R2, and (b,c)R2 then (a,c)R2;   a,b,cA\left( a,b \right)\in {{R}_{2}},\ and\ \left( b,c \right)\in {{R}_{2}}\ then\ \left( a,c \right)\in {{R}_{2}};\ \ \ a,b,c\in A
We have to prove that R1R2{{R}_{1}}\cap {{R}_{2}} is an equivalence relation.
Check reflexive:
For all aA,(a,a)R1 and (a,a)R2    [As both R1 and R2 are reflexive on A]a\in A,\left( a,a \right)\in {{R}_{1}}\ and\ \left( a,a \right)\in {{R}_{2}}\ \ \ \ \left[ As\ both\ {{R}_{1}}\ and\ {{R}_{2}}\ are\ reflexive\ on\ A \right]
We know that if an element belongs to set A and also to set B, then the element will also belong to (AB)\left( A\cap B \right).
So, as aA,(a,a)R1 and (a,a)R2 , (a,a)(R1R2)a\in A,\left( a,a \right)\in {{R}_{1}}\ and\ \left( a,a \right)\in {{R}_{2}}\ ,\ \left( a,a \right)\in \left( {{R}_{1}}\cap {{R}_{2}} \right)
\therefore (R1R2)\left( {{R}_{1}}\cap {{R}_{2}} \right) is reflexive on A.
Check symmetric:
If (a,b)R1 then (b,a)R1............(1)\left( a,b \right)\in {{R}_{1}}\ then\ \left( b,a \right)\in {{R}_{1}}............\left( 1 \right) [As R1{{R}_{1}} is symmetric on A]
If (a,b)R2 then (b,a)R2............(2)\left( a,b \right)\in {{R}_{2}}\ then\ \left( b,a \right)\in {{R}_{2}}............\left( 2 \right) [As R2{{R}_{2}} is symmetric on A]
From (1) and (2),
If (a,b)(R1R2) then (b,a)(R1R2)\left( a,b \right)\in \left( {{R}_{1}}\cap {{R}_{2}} \right)\ then\ \left( b,a \right)\in \left( {{R}_{1}}\cap {{R}_{2}} \right)
So, (R1R2)\left( {{R}_{1}}\cap {{R}_{2}} \right) is symmetric on A.
Check transitivity:
If (a,b)R1 and (b,c)R1 then (a,c)R1............(3)\left( a,b \right)\in {{R}_{1}}\ and\ \left( b,c \right)\in {{R}_{1}}\ then\ \left( a,c \right)\in {{R}_{1}}............\left( 3 \right) [As R1{{R}_{1}} is transitive on A]
If (a,b)R2 and (b,c)R2 then (a,c)R2............(4)\left( a,b \right)\in {{R}_{2}}\ and\ \left( b,c \right)\in {{R}_{2}}\ then\ \left( a,c \right)\in {{R}_{2}}............\left( 4 \right) [As R2{{R}_{2}} is transitive on A]
From (3) and (4),
If (a,b)(R1R2) and (b,c)(R1R2) then (a,c)(R1R2)\left( a,b \right)\in \left( {{R}_{1}}\cap {{R}_{2}} \right)\ and\ \left( b,c \right)\in \left( {{R}_{1}}\cap {{R}_{2}} \right)\ then\ \left( a,c \right)\in \left( {{R}_{1}}\cap {{R}_{2}} \right)
So, (R1R2)\left( {{R}_{1}}\cap {{R}_{2}} \right) is transitive on A.
Since, (R1R2)\left( {{R}_{1}}\cap {{R}_{2}} \right) is symmetric, reflexive and transitive on A, (R1R2)\left( {{R}_{1}}\cap {{R}_{2}} \right) will be an equivalence relation on set A.

Note: Let’s look at an example of equivalence relation: so, the relation ‘is equal to’ denoted by == , is an equivalence relation on the set of real numbers since for any x,y,zRx,y,z\in \mathbb{R} :
A. Reflexivity: x=xx=x
B. Symmetry: if x=yx=y then y=xy=x
C. Transitivity: if x=yx=y and y=zy=z then x=zx=z
. Since all of these are true, therefore it is an equivalence relation. Note that to represent an equivalence relation we use: \sim .