Question
Mathematics Question on Trigonometric Equations
If tanθ⋅tan(120∘−θ)tan(120∘+θ)=31, then θ is equal to
A
3nπ+18π,n∈Z
B
3nπ+12π,n∈Z
C
12nπ+12π,n∈Z
D
3nπ+6π,n∈Z
Answer
3nπ+18π,n∈Z
Explanation
Solution
Given that, tanθ⋅tan(120∘−θ)tan(120∘+θ)=31
∵tanθtan(120∘−θ)tan(120∘+θ)
=tan3θ
∴tan3θ=31⇒tan3θ=tan6π
⇒3θ=nπ+6π
⇒θ=3nπ+18π,n∈Z