Solveeit Logo

Question

Mathematics Question on Trigonometric Equations

If tanθtan(120θ)tan(120+θ)=13\quad \tan \theta \cdot \tan \left(120^{\circ}-\theta\right) \tan \left(120^{\circ}+\theta\right)=\frac{1}{\sqrt{3}}, then θ\theta is equal to

A

nπ3+π18,nZ\frac{n \pi}{3}+\frac{\pi}{18}, n \in Z

B

nπ3+π12,nZ\frac{n \pi}{3}+\frac{\pi}{12}, n \in Z

C

nπ12+π12,nZ\frac{n \pi}{12}+\frac{\pi}{12}, n \in Z

D

nπ3+π6,nZ\frac{n \pi}{3}+\frac{\pi}{6}, n \in Z

Answer

nπ3+π18,nZ\frac{n \pi}{3}+\frac{\pi}{18}, n \in Z

Explanation

Solution

Given that, tanθtan(120θ)tan(120+θ)=13\tan \theta \cdot \tan \left(120^{\circ}-\theta\right) \tan \left(120^{\circ}+\theta\right)=\frac{1}{\sqrt{3}}
tanθtan(120θ)tan(120+θ)\because \tan \theta \tan \left(120^{\circ}-\theta\right) \tan \left(120^{\circ}+\theta\right)
=tan3θ=\tan 3 \theta
tan3θ=13tan3θ=tanπ6\therefore \tan 3 \theta=\frac{1}{\sqrt{3}} \Rightarrow \tan 3 \theta=\tan \frac{\pi}{6}
3θ=nπ+π6\Rightarrow 3 \theta=n \pi+\frac{\pi}{6}
θ=nπ3+π18,nZ\Rightarrow \theta=\frac{n \pi}{3}+\frac{\pi}{18}, n \in Z