Solveeit Logo

Question

Question: If q<sub>1</sub> and q<sub>2</sub> be the angles which the lines (x<sup>2</sup> + y<sup>2</sup>) (co...

If q1 and q2 be the angles which the lines (x2 + y2) (cos2q sin2a + sin2q) = (x tan a – y sin q)2 make with the axis of x,

and q = π6\frac{\pi}{6}, then tan q1 + tan q2 is equal to –

A

83\frac{8}{3}sina

B

83\frac{8}{3}cosec 2a

C

838\sqrt{3}cosec 2a

D

–4cosec 2a

Answer

83\frac{8}{3}cosec 2a

Explanation

Solution

The given equation can be written as

(x2 + y2) (cos2 q sin2 a + sin2 q) = x2 tan2

a – 2xy tan a sin q + y2sin2 q

or (cos2 q sin2 a + sin2 q – tan2 a)x2 + 2(tan a sin q) xy + cos2 q sin2 a y2 = 0

Since the slope of these lines are given as tan q1 and tan q2

Sum of the slopes = 2tanαsinθcos2θsin2α\frac { - 2 \tan \alpha \sin \theta } { \cos ^ { 2 } \theta \sin ^ { 2 } \alpha } (θ=π6)\left( \because\theta = \frac{\pi}{6} \right)

Ž tan q1 + tan q2 = 2tanα×1234×sin2α\frac{- 2\tan\alpha \times \frac{1}{2}}{\frac{3}{4} \times \sin^{2}\alpha}= 83\frac{8}{3}cosec2a.