Solveeit Logo

Question

Question: If q is the angle (semi-vertical) of a cone of maximum volume and given slant height, then tan q is ...

If q is the angle (semi-vertical) of a cone of maximum volume and given slant height, then tan q is given by

A

2

B

1

C

2\sqrt { 2 }

D

) 3\sqrt { 3 }

Answer

2\sqrt { 2 }

Explanation

Solution

Let OB = l, OA = l cos q and AB = l sin q

( 0 £ q £ p/2). Then

V = π3\frac { \pi } { 3 } (AB)2 (OA) = π3\frac { \pi } { 3 } l3 sin2 q cos q

Ž dVdθ\frac { \mathrm { dV } } { \mathrm { d } \theta } = π3\frac { \pi } { 3 } l3 sin q (3 cos2 q –1)

So from dVdθ\frac { \mathrm { dV } } { \mathrm { d } \theta } = 0, we get q = 0 or cos q =13\frac { 1 } { \sqrt { 3 } }. Also V(0) = 0, V (p/2) = 0 and

V (cos113)\left( \cos ^ { - 1 } \frac { 1 } { \sqrt { 3 } } \right) = 2π393\frac { 2 \pi \ell ^ { 3 } } { 9 \sqrt { 3 } }

Hence V is maximum when cos q = 1/ 3\sqrt { 3 } , i.e.,

tan q = 2\sqrt { 2 }