Question
Question: If q is the angle of intersection of two circle x<sup>2</sup> + y<sup>2</sup> = a<sup>2</sup> and (x...
If q is the angle of intersection of two circle x2 + y2 = a2 and (x – c)2 + y2 = b2, then the length of common chord of two circle is –
a2+b2−2abcosθab
a2+b2−2abcosθ2ab
a2+b2−2abcosθ2absinθ
None of these
a2+b2−2abcosθ2absinθ
Solution
We have the two circles x2 + y2 = a2, (x – c)2 + y2 = b2 radius of first circle = a
Let ŠOPM = a, ŠAPM = b, \ ŠOPA = a + b = q
Let PQ = x
radius of second circle = b
cos a = PM/a = x/2a, cos b = x/2b
Now cos q = cos (a + b) = cos a cos b – sin a sin b
\ sin a sin b = cos a cos b – cos q
Squaring of both sides, we get
sin2 a sin2 b = cos2 a cos2 b + cos2 q – 2 cos q cos a cos b
1 – cos2 a – cos2 b + cos2 a cos2 b = cos2 a cos2 b + cos2 q –
2 cos q cos a cos b
Ž \ sin2q = cos2 a + cos2 b – 2 cos q cos a cos b
sin2 q = 4a2x2+4b2x2–4ab2.x2. cos q
Ž 4a2b2 sin2 q = x2 (b2 + a2 – 2ab cos q)
\ x = a2+b2−2abcosθ2absinθ.