Solveeit Logo

Question

Question: If q is the angle of intersection of two circle x<sup>2</sup> + y<sup>2</sup> = a<sup>2</sup> and (x...

If q is the angle of intersection of two circle x2 + y2 = a2 and (x – c)2 + y2 = b2, then the length of common chord of two circle is –

A

aba2+b22abcosθ\frac{ab}{\sqrt{a^{2} + b^{2} - 2ab\cos\theta}}

B

2aba2+b22abcosθ\frac{2ab}{\sqrt{a^{2} + b^{2} - 2ab\cos\theta}}

C

2absinθa2+b22abcosθ\frac{2ab\sin\theta}{\sqrt{a^{2} + b^{2} - 2ab\cos\theta}}

D

None of these

Answer

2absinθa2+b22abcosθ\frac{2ab\sin\theta}{\sqrt{a^{2} + b^{2} - 2ab\cos\theta}}

Explanation

Solution

We have the two circles x2 + y2 = a2, (x – c)2 + y2 = b2 radius of first circle = a

Let ŠOPM = a, ŠAPM = b, \ ŠOPA = a + b = q

Let PQ = x

radius of second circle = b

cos a = PM/a = x/2a, cos b = x/2b

Now cos q = cos (a + b) = cos a cos b – sin a sin b

\ sin a sin b = cos a cos b – cos q

Squaring of both sides, we get

sin2 a sin2 b = cos2 a cos2 b + cos2 q – 2 cos q cos a cos b

1 – cos2 a – cos2 b + cos2 a cos2 b = cos2 a cos2 b + cos2 q –

2 cos q cos a cos b

Ž \ sin2q = cos2 a + cos2 b – 2 cos q cos a cos b

sin2 q = x24a2\frac{x^{2}}{4a^{2}}+x24b2\frac{x^{2}}{4b^{2}}2.x24ab\frac{2.x^{2}}{4ab}. cos q

Ž 4a2b2 sin2 q = x2 (b2 + a2 – 2ab cos q)

\ x = 2absinθa2+b22abcosθ\frac{2ab\sin\theta}{\sqrt{a^{2} + b^{2} - 2ab\cos\theta}}.