Solveeit Logo

Question

Question: If Q (0,-1,-3) is the image of the point P in the plane 3x – y + 4z = 2 and R is the point (3, -1, -...

If Q (0,-1,-3) is the image of the point P in the plane 3x – y + 4z = 2 and R is the point (3, -1, -2), then the area (in square units) of ΔPQR\Delta PQR is:
(a) 642\dfrac{\sqrt{64}}{2}
(b) 914\dfrac{\sqrt{91}}{4}
(c) 2132\sqrt{13}
(d) 912\dfrac{\sqrt{91}}{2}

Explanation

Solution

Hint: First of all, we would use plane equation and coordinates of Q to obtain the coordinates of P. After that, we have three points and by applying the area formula we would evaluate the area of the triangle.

Complete step-by-step answer:

For an equation of plane ax + by + cz = d, the corresponding direction normal vector is (a, b, c).
Hence, the given plane 3x – y + 4z = 2, the direction normal can be given as (3, -1, 4).
The equation of a line passing through a point (a1,a2,a3)\left( {{a}_{1}},{{a}_{2}},{{a}_{3}} \right) and parallel to another line whose direction vector is (b1,b2,b3)\left( {{b}_{1}},{{b}_{2}},{{b}_{3}} \right) could be given as:
xa1b1=ya2b2=za3b3\dfrac{x-{{a}_{1}}}{{{b}_{1}}}=\dfrac{y-{{a}_{2}}}{{{b}_{2}}}=\dfrac{z-{{a}_{3}}}{{{b}_{3}}}
So, the equation of a line passing through Q and parallel to direction normal of plane:
x3=y+11=z+34\dfrac{x}{3}=\dfrac{y+1}{-1}=\dfrac{z+3}{4}
Now let the point A be on the plane which is the mid-point of the line joining PQ. Hence, the coordinates of A in the form of λ\lambda .
x3=y+11=z+34=λ x=3λ,y=λ1,z=4λ3 A=(3λ,λ1,4λ3) \begin{aligned} & \dfrac{x}{3}=\dfrac{y+1}{-1}=\dfrac{z+3}{4}=\lambda \\\ & x=3\lambda ,y=-\lambda -1,z=4\lambda -3 \\\ & A=\left( 3\lambda ,-\lambda -1,4\lambda -3 \right) \\\ \end{aligned}
Satisfying the coordinates of A in the equation of plane:
3×3λ(λ1)+4(4λ3)=2 9λ+λ+1+16λ12=2 26λ=13 λ=12 \begin{aligned} & 3\times 3\lambda -\left( -\lambda -1 \right)+4\cdot \left( 4\lambda -3 \right)=2 \\\ & 9\lambda +\lambda +1+16\lambda -12=2 \\\ & 26\lambda =13 \\\ & \lambda =\dfrac{1}{2} \\\ \end{aligned}
Therefore, the coordinates of A =(32,32,1)=\left( \dfrac{3}{2},-\dfrac{3}{2},-1 \right).
So, the coordinate of P can be evaluated by using the mid-point formula:
x=x1+x22,y=y1+y22,z=z1+z22x=\dfrac{{{x}_{1}}+{{x}_{2}}}{2},y=\dfrac{{{y}_{1}}+{{y}_{2}}}{2},z=\dfrac{{{z}_{1}}+{{z}_{2}}}{2}
So, we have A=(32,32,1)=\left( \dfrac{3}{2},-\dfrac{3}{2},-1 \right) as the mid-point of P (x, y, z) and Q (0, -1, -3).
Now, to evaluate coordinates of P:
32=x2,32=y12,1=z32 x=3,y=2,z=1 \begin{aligned} & \dfrac{3}{2}=\dfrac{x}{2},\dfrac{-3}{2}=\dfrac{y-1}{2},-1=\dfrac{z-3}{2} \\\ & \therefore x=3,y=-2,z=1 \\\ \end{aligned}
Therefore, P (3, -2, 1).
So, now we are required to calculate the area of ΔPQR\Delta PQR whose coordinates P (3, -2, 1)
Q (0, -1, -3) and R (3, -1, -2).
The vector formed from two position vectors is:
AB=position vector of B  position vector of A\overrightarrow{AB}=position\text{ vector of B }-\text{ }position\text{ vector of A}
Let two vectors formed from P, Q, R would be:
PQ=(03)i+(1+2)j+(31)k PQ=3i+j4k QR=(30)i+(1+1)j+(2+3)k QR=3i+k \begin{aligned} & \overrightarrow{PQ}=\left( 0-3 \right)i+\left( -1+2 \right)j+\left( -3-1 \right)k \\\ & \overrightarrow{PQ}=-3i+j-4k \\\ & \overrightarrow{QR}=\left( 3-0 \right)i+\left( -1+1 \right)j+\left( -2+3 \right)k \\\ & \overrightarrow{QR}=3i+k \\\ \end{aligned}
As we know that Area of triangle in determinant form for a vector:
A=12×ijk b1b2b3 c1c2c3 A=\dfrac{1}{2}\times \left| \begin{matrix} i & j & k \\\ {{b}_{1}} & {{b}_{2}} & {{b}_{3}} \\\ {{c}_{1}} & {{c}_{2}} & {{c}_{3}} \\\ \end{matrix} \right|
Area of ΔPQR\Delta PQR:
A=12×ijk 314 301  A=12×i(10)j(3+12)+k(03) A=12×i9j3k A=912 \begin{aligned} & A=\dfrac{1}{2}\times\left| \begin{matrix} i & j & k \\\ -3 & 1 & -4 \\\ 3 & 0 & 1 \\\ \end{matrix} \right| \\\ & A=\dfrac{1}{2}\times i\left( 1-0 \right)-j\left( -3+12 \right)+k\left( 0-3 \right) \\\ & A=\dfrac{1}{2}\times i-9j-3k \\\ & \left| A \right|=\dfrac{\sqrt{91}}{2} \\\ \end{aligned}
So, the correct answer is option (d).

Note: Alternate solution of this question is by using the distance formula of plane to a point and calculate the distance of point Q and hence calculate the total length of PQ which is twice of QM.
Then, calculate the perpendicular distance RM and finally evaluate the area.