Solveeit Logo

Question

Question: If \(P(x,y),F_{1} = (3,0)\),\(F_{2} = ( - 3,0)\) and \(16x^{2} + 25y^{2} = 400\), then \(PF_{1} + PF...

If P(x,y),F1=(3,0)P(x,y),F_{1} = (3,0),F2=(3,0)F_{2} = ( - 3,0) and 16x2+25y2=40016x^{2} + 25y^{2} = 400, then PF1+PF2PF_{1} + PF_{2}equals

A

8

B

6

C

10

D

12

Answer

10

Explanation

Solution

We have 16x2+25y2=400x225+y216=1\mathbf{16}\mathbf{x}^{\mathbf{2}}\mathbf{+ 25}\mathbf{y}^{\mathbf{2}}\mathbf{= 400 \Rightarrow}\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{25}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{16}}\mathbf{= 1}or x2a2+y2b2=1\frac{\mathbf{x}^{\mathbf{2}}}{\mathbf{a}^{\mathbf{2}}}\mathbf{+}\frac{\mathbf{y}^{\mathbf{2}}}{\mathbf{b}^{\mathbf{2}}}\mathbf{= 1}, where a2=25a^{2} = 25and b2=16b^{2} = 16

This equation represents an ellipse with eccentricity given by e2=1b2a2=11625=925e^{2} = 1 - \frac{b^{2}}{a^{2}} = 1 - \frac{16}{25} = \frac{9}{25}e=3/5e = 3/5

So, the coordinates of the foci are (±ae,0)( \pm ae,0) i.e. (3,0)(3,0) and (3,0)( - 3,0), Thus, F1F_{1} and F2F_{2} are the foci of the ellipse.

Since, the sum of the focal distance of a point on an ellipse is equal to its major axis, ∴ PF1+PF2=2a=10PF_{1} + PF_{2} = 2a = 10