Solveeit Logo

Question

Question: If P(x, y, z) is a point on the line segment joining Q(2, 2, 4) and R (3, 5, 6) such that the projec...

If P(x, y, z) is a point on the line segment joining Q(2, 2, 4) and R (3, 5, 6) such that the projections of OP\overset{\rightarrow}{OP}on the axes are 135\frac{13}{5}, 195\frac{19}{5}, 265\frac{26}{5} respectively, then P divides QR in the ratio –

A

1 : 2

B

3 : 2

C

2 : 3

D

1 :

Answer

1 : 2

Explanation

Solution

SinceOP\overset{\rightarrow}{OP} has projections 135\frac{13}{5}, 195\frac{19}{5}and 265\frac{26}{5} on the

co-ordinate axes, therefore OP\overset{\rightarrow}{OP}= 195\frac { 19 } { 5 } j^\widehat{j}+265\frac { 26 } { 5 } k^\widehat{k}.

Suppose P divides the join of Q (2, 2, 4) and R (3, 5, 6) in the ratio l : 1. Then the position vector of P is

(3λ+2λ+1)i^\left( \frac{3\lambda + 2}{\lambda + 1} \right)\widehat{i}+(5λ+2λ+1)j^\left( \frac{5\lambda + 2}{\lambda + 1} \right)\widehat{j} +(6λ+4λ+1)k^\left( \frac{6\lambda + 4}{\lambda + 1} \right)\widehat{k}

\195\frac { 19 } { 5 } j^\widehat{j}+265\frac { 26 } { 5 } k^\widehat{k}

= (3λ+2λ+1)i^\left( \frac{3\lambda + 2}{\lambda + 1} \right)\widehat{i}+(5λ+2λ+1)j^\left( \frac{5\lambda + 2}{\lambda + 1} \right)\widehat{j} +(6λ+4λ+1)k^\left( \frac{6\lambda + 4}{\lambda + 1} \right)\widehat{k}

Ž 3λ+2λ+1\frac{3\lambda + 2}{\lambda + 1} = 135\frac{13}{5}, 5λ+2λ+1\frac{5\lambda + 2}{\lambda + 1} = 195\frac{19}{5}, 6λ+4λ+1\frac{6\lambda + 4}{\lambda + 1} = 265\frac{26}{5} Ž l = 32\frac{3}{2}.