Solveeit Logo

Question

Question: If \[pv{\text{ }} = {\text{ }}81\] , then\[\dfrac{{dp}}{{dv}}\] at \[v{\text{ }} = {\text{ }}9\] is ...

If pv = 81pv{\text{ }} = {\text{ }}81 , thendpdv\dfrac{{dp}}{{dv}} at v = 9v{\text{ }} = {\text{ }}9 is equal to
(1)\left( 1 \right) 11
(2)\left( 2 \right) 1 - 1
(3)\left( 3 \right) 22
(4)\left( 4 \right) none of thesenone{\text{ }}of{\text{ }}these

Explanation

Solution

Hint : We have to find the derivative of pp with respect to vv. Using quotient rule of derivative d[uv]=(u×vv×u)v2d[\dfrac{u}{v}] = \dfrac{{(u \times v' - v \times u')}}{{{v^2}}}provided all functions are defined . Make the equation in terms of a single variable pp , then differentiate it with respect to vv gives dpdv\dfrac{{dp}}{{dv}}. After applying the quotient rule we will put the value of vv. This gives the value of  dpdv{\text{ }}\dfrac{{dp}}{{dv}}.

Complete step-by-step answer :
Differentiation, in mathematics , is the process of finding the derivative , or the rate of change of a given function . In contrast to the abstract nature of the theory behind it , the practical technique of differentiation can be carried out by purely algebraic manipulations , using three basic derivatives , four rules of operation , and a knowledge of how to manipulate functions. We can solve any of the problems using the rules of operations i.e. addition , subtraction , multiplication and division .
Given : pv = 81pv{\text{ }} = {\text{ }}81
Simplifying , p =81vp{\text{ }} = \dfrac{{81}}{v} ——(1)
Differentiate pp with respect to and applying quotient rule , we get
dpdv=81[0×v1×1]v2\dfrac{{dp}}{{dv}} = \dfrac{{81[0 \times v - 1 \times 1]}}{{{v^2}}}
dpdv=81[1v2]\dfrac{{dp}}{{dv}} = 81[\dfrac{{ - 1}}{{{v^2}}}] ——(2)
We have to find value of dpdv\dfrac{{dp}}{{dv}} at v = 9v{\text{ }} = {\text{ }}9
Put v = 9v{\text{ }} = {\text{ }}9 in (2) , we get
dpdv=81(9)2\dfrac{{dp}}{{dv}} = \dfrac{{ - 81}}{{{{(9)}^2}}}
dpdv = 1\dfrac{{dp}}{{dv}}{\text{ }} = {\text{ }} - 1
Thus , the correct option is (2)\left( 2 \right)
So, the correct answer is “Option 2”.

Note: Derivative of sum of two function is equal to sum of the derivatives of the functions :
d[f(x) + g(x) ]dx = d f(x)dx +d g(x)dx\dfrac{{d\left[ {f\left( x \right){\text{ }} + {\text{ }}g\left( x \right){\text{ }}} \right]}}{{dx}}{\text{ }} = {\text{ }}\dfrac{{d{\text{ }}f\left( x \right)}}{{dx}}{\text{ }} + \dfrac{{d{\text{ }}g\left( x \right)}}{{dx}}
Derivative of product of two function is difference of the derivatives of the functions :
 d[f(x)  g(x)]dx= d[f(x)]dx d[g(x)]dx{\text{ }}\dfrac{{d\left[ {f\left( x \right){\text{ }} - {\text{ }}g\left( x \right)} \right]}}{{dx}} = {\text{ }}\dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} - {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}
Derivative of product of two function is given by the following product rule :
d[f(x) × g(x)]dx\dfrac{{d\left[ {f\left( x \right){\text{ }} \times {\text{ }}g\left( x \right)} \right]}}{{dx}} =d[f(x)]dx×g + f × d[g(x)]dx = \dfrac{{d\left[ {f\left( x \right)} \right]}}{{dx}} \times g{\text{ }} + {\text{ }}f{\text{ }} \times {\text{ }}\dfrac{{d\left[ {g\left( x \right)} \right]}}{{dx}}
Derivative of quotient of two function is given by the following quotient rule :
d[f(x)g(x)]dx=[d[f(x)]dx×g(x)f(x)×d[g(x)]dx][g(x)]2\dfrac{{d\left[ {\dfrac{{f\left( x \right)}}{{g\left( x \right)}}} \right]}}{{dx}}= \dfrac{{[\dfrac{{d[f(x)]}}{{dx}} \times g(x) - f(x) \times \dfrac{{d[g(x)]}}{{dx}}]}}{{{{[g(x)]}^2}}}