Solveeit Logo

Question

Question: If p<sub>1</sub>and p<sub>2</sub> are the lengths of the perpendiculars from the points (2, 3, 4) an...

If p1and p2 are the lengths of the perpendiculars from the points (2, 3, 4) and (1, 1, 4) respectively on the plane

3x – 6y + 2z + 11 = 0, then p1, p2 are the roots of the equation

A

p2 – 23p 7 = 0

B

7p2 – 23p + 16 = 0

C

p2 – 17p + 16 = 0

D

p2 – 16p + 7 = 0

Answer

7p2 – 23p + 16 = 0

Explanation

Solution

We have

p1 3×26×3+2×4+1132+(6)2+(2)2\frac { 3 \times 2 - 6 \times 3 + 2 \times 4 + 11 } { \sqrt { 3 ^ { 2 } + ( - 6 ) ^ { 2 } + ( 2 ) ^ { 2 } } }= 77\frac { 7 } { 7 } = 1

and p2 = = 3×26×1+2×4+1132+(6)2+(2)2\frac { 3 \times 2 - 6 \times 1 + 2 \times 4 + 11 } { \sqrt { 3 ^ { 2 } + ( - 6 ) ^ { 2 } + ( 2 ) ^ { 2 } } } = 167\frac { 16 } { 7 }

So, that p1, p2 are the roots of the equation

p2(1+167)\left( 1 + \frac { 16 } { 7 } \right)p + 167\frac { 16 } { 7 } = 0

Ž 7p2 – 23p + 16 = 0