Question
Question: If p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub> are respectively the perpendiculars from the vertice...
If p1, p2, p3 are respectively the perpendiculars from the
vertices of a ∆ to the opposite sides, then –
A
p11 ++ p31 = r
B
p1p2p3= 8R2a2b2c2
C
p1cosA+ p2cosB + p3cosC =
D
cbp1 ++ bap3 =
Answer
p1cosA+ p2cosB + p3cosC =
Explanation
Solution
p1= , p2=
, p3=c2Δ
⇒+
+
=
⇒ =
=
...(i)
p1p2p3 ==
=8R3a2b2c2 ...(ii)
Also p1cosA++
=2Δ1
(a cos A + b cos B + c cos C)
=(4 sinA sin B sin C) =
= R1 ...(iii)
and + acp2 + bap3
=×
+ ac ×
+ ba × c2Δ
= 2∆= 2∆
= 2(a2 + b2 + c2). = 2Ra2+b2+c2