Question
Question: If p<sub>1</sub>, p<sub>2</sub>, p<sub>3</sub> are respectively the perpendiculars from the vertice...
If p1, p2, p3 are respectively the perpendiculars from the
vertices of a ∆ to the opposite sides, then –
A
p11 +
+ p31 = r
B
p1p2p3= 8R2a2b2c2
C
p1cosA+ p2cosB + p3cosC =
D
cbp1 +
+ bap3 =
Answer
p1cosA+ p2cosB + p3cosC =
Explanation
Solution
p1=
, p2=
, p3=c2Δ
⇒
+
+
=
⇒
=
=
...(i)
p1p2p3 =
=
=8R3a2b2c2 ...(ii)
Also p1cosA+
+
=2Δ1
(a cos A + b cos B + c cos C)
=
(4 sinA sin B sin C) =
= R1 ...(iii)
and
+ acp2 + bap3
=
×
+ ac ×
+ ba × c2Δ
= 2∆
= 2∆
= 2(a2 + b2 + c2).
= 2Ra2+b2+c2
