Solveeit Logo

Question

Physics Question on kinetic theory

If pressure of CO2CO_2 (real gas) in a container is given by p=RT2Vb94b2,p = \frac{RT}{2V - b} - \frac{9}{4b^2}, then mass of the gas in container ts

A

11 g

B

22 g

C

33 g

D

44 g

Answer

22 g

Explanation

Solution

van der Waals' gas equation for μ\mu mole of real gas (p+μ2aV2)(Vμb)=μRT \, \, \, \, \, \, \, \, \bigg( p + \frac{\mu^2 a}{V^2}\bigg) (V - \mu b) = \mu \, RT p=(μRTVμb)μ2aV2 \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, p = \bigg( \frac{\mu RT}{V - \mu b}\bigg) - \frac{\mu^2 a}{V^2} Given equation, p=(RT2Vba4b2) \, \, \, \, \, \, \, \, \, \, p = \bigg( \frac{RT}{2V - b} - \frac{a}{4b^2}\bigg) On comparing the given equation with this standard equation, we get μ=12 \, \, \, \, \, \, \, \mu = \frac{1}{2} Hence, μ=mM\mu = \frac{m}{M} \Rightarrow mass of gas m=μM=12×44=22g \, \, \, \, \, \, \, \, \, \, \, m = \mu M = \frac{1}{2} \times 44 = 22g