Question
Mathematics Question on Three Dimensional Geometry
If PQR is a triangle of area △ with a = 2, b = 27 and c = 25, where a, b and c are the lengths of the sides of ' the triangle opposite to the angles a t P ,Q and R, respectively. Then, 2sinP+sin2P2sinP−sin2P equals
A
4△3
B
4△45
C
(4△3)2
D
(4△45)5
Answer
(4△3)2
Explanation
Solution
PLAN If △ ABC has sides a, b, c Then, tan (A/2) = s(s−a)(s−b)(s−a) where, s = 2a+b+c⇒s=22+27+25=4 ∴2sinP+sin2P2sinP−sin2P=2sinP(1+cosP)2sinP(1−cosP) \hspace26mm = 2cos2(P/2)2sin2(P/2)=tan2(P/2) ⇒s(s−a)(s−b)(s−c)×(s−b)(s−c)(s−b)(s−c) = △2[(s−b)2(s−c)2]=△2(4−27)2(4−25)2=(4△3)2