Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If PQR is a triangle of area \triangle with a = 2, b = 72 \frac{7}{2} and c = 52 \frac{5}{2}, where a, b and c are the lengths of the sides of ' the triangle opposite to the angles a t P ,Q and R, respectively. Then, 2sinPsin2P2sinP+sin2P \frac{ 2 \, sin \, P - sin \, 2 P }{ 2 \, sin \, P + sin \, 2P } equals

A

34\frac{ 3}{4 \triangle}

B

454 \frac{ 45}{4 \triangle}

C

(34)2\bigg( \frac{ 3}{4 \triangle} \bigg)^2

D

(454)5\bigg(\frac{ 45}{4 \triangle}\bigg)^5

Answer

(34)2\bigg( \frac{ 3}{4 \triangle} \bigg)^2

Explanation

Solution

PLAN If \triangle ABC has sides a, b, c Then, tan (A/2) = (sb)(sa)s(sa)\sqrt{ \frac{ (s - b) \, (s - a)}{ s \, (s - a)}} where, s = a+b+c2s=2+72+522=4\frac{a + b + c}{ 2} \Rightarrow s = \frac{ 2 + \frac{ 7}{2} + \frac{5}{2} }{2} = 4 2sinPsin2P2sinP+sin2P=2sinP(1cosP)2sinP(1+cosP) \therefore \frac{ 2 \, sin \, P - sin \, 2 P }{ 2 \, sin \, P + sin \, 2P } = \frac{ 2 sin \, P (1 - cos \, P )}{ 2 \, sin \, P (1 + cos \, P )} \hspace26mm = 2sin2(P/2)2cos2(P/2)=tan2(P/2) \frac{ 2 \, sin^2 (P/2)}{2 \, cos^2 (P/2)} = tan^2 \, (P/2) (sb)(sc)s(sa)×(sb)(sc)(sb)(sc)\Rightarrow \frac{ (s - b) \, (s - c)}{ s \, (s - a)} \times \frac{ (s- b) \, (s - c)}{ (s - b) \, (s - c)} = [(sb)2(sc)2]2=(472)2(452)22=(34)2\frac{ [ (s - b)^2 \, (s - c)^2 ] }{ \triangle^2 } = \frac{\bigg( 4 - \frac{7}{2}\bigg)^2 \, \bigg( 4 - \frac{5}{2}\bigg)^2 }{ \triangle^2 } = \bigg( \frac{ 3}{ 4 \triangle } \bigg)^2