Solveeit Logo

Question

Mathematics Question on Surds and Indices

If pqr = 1 then
($$(\frac{1}{1 + p + q^-1}) ++ (11+q+r1)(\frac{1}{1 + q + r^-1}) ++ (\frac{1}{1 + r + p^-1})$$) is equal to

A

1

B

pq

C

qr

D

1pq\frac{1}{pq}

Answer

1

Explanation

Solution

In the question it is given that pqrpqr = 1

The equation given is ((11+p+q1)((\frac{1}{1 + p + q^-1}) + (11+q+r1)(\frac{1}{1 + q + r^-1}) + (11+r+p1))(\frac{1}{1 + r + p^-1}))

= 11+q+1q+11+q+1r+11+q+1p\frac{1}{1+ q + \frac{1}{q}} + \frac{1}{1+ q + \frac{1}{r}} + \frac{1}{1+ q + \frac{1}{p}}

= q1+q+pq+11+q+pq+q1+1pq+1p\frac{q}{1+ q + pq} + \frac{1}{1+ q + pq} + \frac{q}{1+ \frac{1}{pq} + \frac{1}{p}}

= q1+q+pq+11+q+pq+pq1+q+pq\frac{q}{1+ q + pq} + \frac{1}{1+ q + pq} + \frac{pq}{1+ q + pq}

1+q+pq1+q+pq=1\frac{1 + q + pq}{1+ q + pq} = 1

The correct option is (A): 1