Solveeit Logo

Question

Question: If P(q), Q \(\left( \theta + \frac{\pi}{2} \right)\) are points on ellipse and a is angle between n...

If P(q), Q (θ+π2)\left( \theta + \frac{\pi}{2} \right) are points on ellipse and a is angle

between normals at P and Q then –

A

21e22\sqrt{1–e^{2}} = e sin2 2q tan a

B

21e22\sqrt{1–e^{2}} = e sin2q. tan 2a

C

1e2\sqrt{1–e^{2}} = 2e2 sin2 2q. tana

D

21e22\sqrt{1–e^{2}} = e2 sin2 2q. tana

Answer

21e22\sqrt{1–e^{2}} = e2 sin2 2q. tana

Explanation

Solution

Slope of normal at P = asinθbcosθ\frac{a\sin\theta}{b\cos\theta} = m1 (let).

Slope of normal at Q = asinθbcosθ\frac{–a\sin\theta}{b\cos\theta} = m2(let)

Therefore tan a = m1m21+m1m2=2tae\frac{m_{1}–m_{2}}{1 + m_{1}m_{2}} = \frac{2t}{ae} = cosec 2q

21e22\sqrt{1–e^{2}} = e2 sin2 2q. tan a.