Question
Question: If PQ is a double ordinate of the hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\)such th...
If PQ is a double ordinate of the hyperbola a2x2−b2y2=1such that OPQ is an equilateral triangle, O being the centre of the hyperbola. Then the eccentricity e of the hyperbola
Satisfies
A
1 < e <32
B
e=32
C
e=23
D
e>32
Answer
e>32
Explanation
Solution

∵ PQ is the doubled ordinate. Let MP=MQ=lgiven that
ΔOPQs an equilateral then OP = OQ = PQ
⇒ (OP)2=(OQ)2=(PQ)2
⇒ b2a2(b2+l2)+l2=b2a2(b2+l2)+l2=4l2
⇒b2a2(b2+l2)=3l2
⇒a2=l2(3−b2a2)
⇒l2=(3b2−a2)a2b2>0∴ 3b2−a2>0
⇒ 3b2>a2
⇒ 3a2(e2−1)>a2
⇒ e2>34 ∴e>32