Solveeit Logo

Question

Question: If PQ is a double ordinate of hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\) such that ...

If PQ is a double ordinate of hyperbola x2a2y2b2=1\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 such that CPQ is an equilateral triangle, C being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies

A

1<e<2/31 < e < 2/\sqrt{3}

B

e=2/3e = 2/\sqrt{3}

C

e=3/2e = \sqrt{3}/2

D

e>2/3e > 2/\sqrt{3}

Answer

e>2/3e > 2/\sqrt{3}

Explanation

Solution

Let P(asecθ,btanθ)P(a ⥂ \sec\theta,b\tan\theta); Q(asecθ,btanθ)Q(a\sec\theta, - b\tan\theta) be end points of double ordinates and C(0,0)C(0,0) is the centre of the hyperbola

Now PQ=2btanθPQ = 2b\tan\theta; CQ=CP=a2sec2θ+b2tan2θCQ = CP = \sqrt{a^{2}\sec^{2}\theta + b^{2}\tan^{2}\theta}

Since CQ=CP=PQCQ = CP = PQ, \therefore 4b2tan2θ=a2sec2θ+b2tan2θ4b^{2}\tan^{2}\theta = a^{2}\sec^{2}\theta + b^{2}\tan^{2}\theta

3b2tan2θ=a2sec2θ3b^{2}\tan^{2}\theta = a^{2}\sec^{2}\thetax2a2y2b2=1a21b2\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = \frac{1}{a^{2}} - \frac{1}{b^{2}}

3a2(e21)sin2θ=a23a^{2}(e^{2} - 1)\sin^{2}\theta = a^{2}3(e21)sin2θ=13(e^{2} - 1)\sin^{2}\theta = 1

13(e21)=sin2θ<1\frac{1}{3(e^{2} - 1)} = \sin^{2}\theta < 1 (sin2θ<1)(\because\sin^{2}\theta < 1)

1e21<3\frac{1}{e^{2} - 1} < 3x2a4y2b4=1a2+1b2\frac{x^{2}}{a^{4}} - \frac{y^{2}}{b^{4}} = \frac{1}{a^{2}} + \frac{1}{b^{2}}e2>43e^{2} > \frac{4}{3}e>23e > \frac{2}{\sqrt{3}}