Question
Question: If PQ is a double ordinate of hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1\) such that ...
If PQ is a double ordinate of hyperbola a2x2−b2y2=1 such that CPQ is an equilateral triangle, C being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies
A
1<e<2/3
B
e=2/3
C
e=3/2
D
e>2/3
Answer
e>2/3
Explanation
Solution
Let P(a⥂secθ,btanθ); Q(asecθ,−btanθ) be end points of double ordinates and C(0,0) is the centre of the hyperbola
Now PQ=2btanθ; CQ=CP=a2sec2θ+b2tan2θ
Since CQ=CP=PQ, ∴ 4b2tan2θ=a2sec2θ+b2tan2θ
⇒ 3b2tan2θ=a2sec2θ ⇒ a2x2−b2y2=a21−b21
⇒ 3a2(e2−1)sin2θ=a2 ⇒ 3(e2−1)sin2θ=1
⇒ 3(e2−1)1=sin2θ<1 (∵sin2θ<1)
⇒ e2−11<3 ⇒ a4x2−b4y2=a21+b21 ⇒ e2>34 ⇒ e>32
