Solveeit Logo

Question

Question: If \[PQ\] be a normal chord of the parabola and \[S\] be the focus, prove that the locus of the cent...

If PQPQ be a normal chord of the parabola and SS be the focus, prove that the locus of the centroid of the triangle SPQSPQ is the curve 36ay2(3x5a)81y4=128a436a{{y}^{2}}\left( 3x-5a \right)-81{{y}^{4}}=128{{a}^{4}}.

Explanation

Solution

Hint: If two points (at12,2at1)\left( at_{1}^{2},2a{{t}_{1}} \right) and (at22,2at2)\left( at_{2}^{2},2a{{t}_{2}} \right) lie on a chord which is normal to the point with parameter t1{{t}_{1}}, then , t2=t12t1{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}

We will consider the equation of parabola be y2=4ax{{y}^{2}}=4ax.
So , the focus of the parabola is S(a,0)S\left( a,0 \right).
Now, we will consider a point P(at12,2at1)P\left( at_{1}^{2},2a{{t}_{1}} \right) on the parabola.
We need to find the equation of normal at this point.
We know , the equation of normal at the point (at2,2at)(a{{t}^{2}},2at) is given as y=tx+2at+at3y=-tx+2at+a{{t}^{3}}, where tt is a parameter.
So , the equation of normal to the parabola at P(at12,2at1)P\left( at_{1}^{2},2a{{t}_{1}} \right) is given as
y=t1x+2at1+at13....(i)y=-{{t}_{1}}x+2a{{t}_{1}}+at_{1}^{3}....\left( i \right)
In the question , it is given this normal is also a chord and cuts the parabola at QQ.
So , let the coordinates of Q=(at22,2at2)Q=\left( at_{2}^{2},2a{{t}_{2}} \right).
QQ lies on the normal chord. So , it should satisfy the equation (i)\left( i \right).
Also, we know if two point (at12,2at1)\left( at_{1}^{2},2a{{t}_{1}} \right) and (at22,2at2)\left( at_{2}^{2},2a{{t}_{2}} \right) lie on a normal chord, then,
t2=t12t1{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}
So, Q=(a(t1+2t1)2,2a(t1+2t1))Q=\left( a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}},-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right) \right)
Now, we need to find the locus of the centroid . So , let the centroid be G(h,k)G\left( h,k \right).
Now , we know the centroid of a triangle formed by the points (x1,y1),(x2,y2)({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}}) and (x3,y3)({{x}_{3}},{{y}_{3}}) is given by
(x1+x2+x33,y1+y2+y33)\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right).
Now, since GG is the centroid of triangle SPQSPQ, so
(h,k)=(a+at12+a(t1+2t1)23,0+2at12a(t1+2t1)3)(h,k)=\left( \dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3},\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3} \right)
Now , we will equate the coordinates .
On equating the coordinates , we get
h=a+at12+a(t1+2t1)23.....(ii)h=\dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3}.....\left( ii \right)
and k=0+2at12a(t1+2t1)3.....(iii)k=\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3}.....\left( iii \right)
From equation (iii)\left( iii \right), we get
3k=2at12at14at13k=2a{{t}_{1}}-2a{{t}_{1}}-\dfrac{4a}{{{t}_{1}}}
or, k=4a3t1k=\dfrac{-4a}{3{{t}_{1}}}
t1=4a3k\Rightarrow {{t}_{1}}=\dfrac{-4a}{3k}
Now , we will substitute this value of t1{{t}_{1}} in equation (ii)\left( ii \right).
On , substituting this value of t1{{t}_{1}} in equation (ii)\left( ii \right) we get,
h=a+a(4a3k)2+a(4a3k+24a3k)23h=\dfrac{a+a{{\left( \dfrac{-4a}{3k} \right)}^{2}}+a{{\left( \dfrac{-4a}{3k}+\dfrac{2}{\dfrac{-4a}{3k}} \right)}^{2}}}{3}
h=a+16a39k2+a(16a29k2+36k216a2+4)3\Rightarrow h=\dfrac{a+\dfrac{16{{a}^{3}}}{9{{k}^{2}}}+a\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{3}
3h=9ak2+16a3+9ak2(16a29k2+36k216a2+4)9k2\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+9a{{k}^{2}}\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{9{{k}^{2}}}
3h=9ak2+16a3+16a3+81k44a+36ak29k2\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+16{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}+36a{{k}^{2}}}{9{{k}^{2}}}
27k2h=45ak2+32a3+81k44a\Rightarrow 27{{k}^{2}}h=45a{{k}^{2}}+32{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}
108ak2h=180a2k2+128a4+81k4\Rightarrow 108a{{k}^{2}}h=180{{a}^{2}}{{k}^{2}}+128{{a}^{4}}+81{{k}^{4}}
36ak2(3h5a)81k4=128a4.........\Rightarrow 36a{{k}^{2}}\left( 3h-5a \right)-81{{k}^{4}}=128{{a}^{4}}.........equation(iv)\left( iv \right)
So , the locus of G(h,k)G\left( h,k \right) is given by replacing (h,k)\left( h,k \right) by (x,y)(x,y) in equation (iv)\left( iv \right)
So, the equation of locus of the centroid is 36ay2(3x5a)81y4=128a436a{{y}^{2}}\left( 3x-5a \right)-81{{y}^{4}}=128{{a}^{4}}

Note: While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .