Solveeit Logo

Question

Question: If position vector of a point Ais \(\mathbf { a } + 2 \mathbf { b }\) and \(\mathbf { a }\) divide...

If position vector of a point Ais a+2b\mathbf { a } + 2 \mathbf { b } and a\mathbf { a } divides AB in the ratio 2 : 3, then the position vector of B is

A
B
C

a3b\mathbf { a } - 3 \mathbf { b }

D

b\mathbf { b }

Answer

a3b\mathbf { a } - 3 \mathbf { b }

Explanation

Solution

Let position vector of B is .

The point C(a)C ( \mathbf { a } ) divides AB in 2 : 3.\therefore a=2x+3(a+2b)2+3\mathbf { a } = \frac { 2 \mathbf { x } + 3 ( \mathbf { a } + 2 \mathbf { b } ) } { 2 + 3 }

̃ 5a=2x+3a+6b5 \mathbf { a } = 2 \mathbf { x } + 3 \mathbf { a } + 6 \mathbf { b }

\therefore x=a3b\mathbf { x } = \mathbf { a } - 3 \mathbf { b }