Solveeit Logo

Question

Question: If \(\pi < \theta < \dfrac{{3\pi }}{2}\) then the expression \(\sqrt {4{{\sin }^4}\theta + {{\sin }^...

If π<θ<3π2\pi < \theta < \dfrac{{3\pi }}{2} then the expression 4sin4θ+sin22θ+4cos2(π4θ2)\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) is equal to
(A) 22
(B) 2+4sinθ2 + 4\sin \theta
(C) 24sinθ2 - 4\sin \theta
(D) 0

Explanation

Solution

Use the double angle formula for cosine function, i.e. cos2x=12sin2x=2cos21\cos 2x = 1 - 2{\sin ^2}x = 2{\cos ^2} - 1 for expression the sin4θ{\sin ^4}\theta in terms of cos2θ\cos 2\theta . After that again use it to change 4cos2(π4θ2)4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) into the form 2(1+cos(π2θ))2\left( {1 + \cos \left( {\dfrac{\pi }{2} - \theta } \right)} \right) . Now transform it further to get the expression in similar trigonometric ratio.

Complete step-by-step answer:
In this problem, we are given an angle θ'\theta ' which lies in the interval (π,3π2)\left( {\pi ,\dfrac{{3\pi }}{2}} \right) . And there is a trigonometric expression 4sin4θ+sin22θ+4cos2(π4θ2)\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) given in terms of angle θ\theta . Using the trigonometric properties and identities, we need to find the value of this expression.
According to the cosine double angle formula, we have:
cos2x=12sin2x=2cos21\cos 2x = 1 - 2{\sin ^2}x = 2{\cos ^2} - 1 …………….(i)
Let’s change the sin4x{\sin ^4}x term inside the radical sign in the form of cos2x\cos 2x. Therefore, by further transforming the above equation we can rewrite it as:
cos2x=12sin2x2sin2x=1cos2x\Rightarrow \cos 2x = 1 - 2{\sin ^2}x \Rightarrow 2{\sin ^2}x = 1 - \cos 2x
On squaring both sides, we will have:
(2sin2x)2=(1cos2x)24sin4x=1+cos22x2cos2x\Rightarrow {\left( {2{{\sin }^2}x} \right)^2} = {\left( {1 - \cos 2x} \right)^2} \Rightarrow 4{\sin ^4}x = 1 + {\cos ^2}2x - 2\cos 2x ............(ii)
Again using (i), and expressing cos2x\cos 2x in terms of cos2x{\cos ^2}x as:
cos2x=2cos2x12cos2x=1+cos2x\Rightarrow \cos 2x = 2{\cos ^2}x - 1 \Rightarrow 2{\cos ^2}x = 1 + \cos 2x ...............(iii)
Now let’s use these relations (ii) and (iii) in the given expression:
4sin4θ+sin22θ+4cos2(π4θ2)=(1+cos22θ2cos2θ)+sin22θ+2(1+cos(π2θ))\Rightarrow \sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = \sqrt {\left( {1 + {{\cos }^2}2\theta - 2\cos 2\theta } \right) + {{\sin }^2}2\theta } + 2\left( {1 + \cos \left( {\dfrac{\pi }{2} - \theta } \right)} \right)
We know the identity sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 and cos(π2x)=sinx\cos \left( {\dfrac{\pi }{2} - x} \right) = \sin x . After using these identities in the above expression, we get:
1+12cos2θ+2(1+sinθ)=22cos2θ+2+2sinθ\Rightarrow \sqrt {1 + 1 - 2\cos 2\theta } + 2\left( {1 + \sin \theta } \right) = \sqrt {2 - 2\cos 2\theta } + 2 + 2\sin \theta
Now let’s again use the relation (i) in the radical sign, and we will get:
22cos2θ+2+2sinθ=22(12sin2θ)+2+2sinθ=4sin2θ+2+2sinθ\Rightarrow \sqrt {2 - 2\cos 2\theta } + 2 + 2\sin \theta = \sqrt {2 - 2\left( {1 - 2{{\sin }^2}\theta } \right)} + 2 + 2\sin \theta = \sqrt {4{{\sin }^2}\theta } + 2 + 2\sin \theta
Now, we just need to find the square root of 4sin2θ4{\sin ^2}\theta to solve the above expression. As we know that the range of the square-root function or exponential function is non-negative real numbers.
Therefore, we get: (4sin2θ)12=2sinθ{\left( {4{{\sin }^2}\theta } \right)^{\dfrac{1}{2}}} = \left| {2\sin \theta } \right|
Here, the sign of sinθ\sin \theta will determine the sign of square root of 4sin2θ4{\sin ^2}\theta . For an angle lying in the interval (π,3π2)\left( {\pi ,\dfrac{{3\pi }}{2}} \right) , the sine function will always give a negative value. So, to satisfy the range of square-root function, the absolute function should be resolved with a negative sign.
(4sin2θ)12=2sinθ=2sinθ\Rightarrow {\left( {4{{\sin }^2}\theta } \right)^{\dfrac{1}{2}}} = \left| {2\sin \theta } \right| = - 2\sin \theta
Thus, our expression becomes:
4sin4θ+sin22θ+4cos2(π4θ2)=4sin2θ+2+2sinθ=2sinθ+2+2sinθ=2\Rightarrow \sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = \sqrt {4{{\sin }^2}\theta } + 2 + 2\sin \theta = - 2\sin \theta + 2 + 2\sin \theta = 2
Therefore, we can conclude: 4sin4θ+sin22θ+4cos2(π4θ2)=2\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = 2 for θ(π,3π2)\theta \in \left( {\pi ,\dfrac{{3\pi }}{2}} \right)
Hence, the option (A) is the correct answer.

Note: For questions like this, the knowledge about the signs of different ratios in different quadrants of angle plays a crucial role. An alternate approach is to break the given expression into two parts: 4sin4θ+sin22θ\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } and 4cos2(π4θ2)4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) . Now solve the first part using the formula for double angle of sine and solve the second part using the double angle formula for cosine. Now after combining you will get the required answer.