Solveeit Logo

Question

Question: If \(\pi < \theta < \dfrac{{3\pi }}{2}\) the expression \(\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\t...

If π<θ<3π2\pi < \theta < \dfrac{{3\pi }}{2} the expression 4sin4θ+sin22θ+4cos2(π4θ2)\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) is equal to

  • (A) 22 (B) 2+4sinθ2 + 4\sin \theta (C) 24sinθ2 - 4\sin \theta (D) 00
Explanation

Solution

Hint- Here in this question we will use some basic trigonometric identities as
sin2α=2sinαcosα\sin 2\alpha = 2\sin \alpha \cos \alpha
sin2α+cos2α=1{\sin ^2}\alpha + {\cos ^2}\alpha = 1
1+2cos2α=cos2α1 + 2{\cos ^2}\alpha = \cos 2\alpha
cos(π2θ)=sinθ\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta

Complete step by step solution-
We have to simplify the expression4sin4θ+sin22θ+4cos2(π4θ2)\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right); to do this we will use some basic identities here.
4sin4θ+sin22θ+4cos2(π4θ2)\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)
=4sin4θ+(2sinθcosθ)2+4cos2(π4θ2)= \sqrt {4{{\sin }^4}\theta + {{\left( {2\sin \theta \cos \theta } \right)}^2}} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) [ ]
On opening the bracket,
=4sin4θ+(4×sin2θ×cos2θ)+4cos2(π4θ2)= \sqrt {4{{\sin }^4}\theta + \left( {4 \times {{\sin }^2}\theta \times {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)
On taking the common term from the terms under the square root,
=4sin2θ(sin2θ+cos2θ)+4cos2(π4θ2)= \sqrt {4{{\sin }^2}\theta \left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)
=4sin2θ×(1)+4cos2(π4θ2)= \sqrt {4{{\sin }^2}\theta \times \left( 1 \right)} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) [ ]
On splitting the 44 in to factors,
=4sin2θ+2×(2cos2(π4θ2))= \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {2{{\cos }^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right)
=4sin2θ+2×(cos(2×(π4θ2))+1)= \sqrt {4{{\sin }^2}\theta } + 2 \times \left( {\cos \left( {2 \times \left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)} \right) + 1} \right) [ ]
=2sinθ+2×(cos(π2θ)+1)= 2\sin \theta + 2 \times \left( {\cos \left( {\dfrac{\pi }{2} - \theta } \right) + 1} \right)
=2sinθ+2×(sinθ+1)= 2\sin \theta + 2 \times \left( {\sin \theta + 1} \right) []=2sinθ+2sinθ+2 = 2\sin \theta + 2\sin \theta + 2
=4sinθ+2= 4\sin \theta + 2
Hence, 4sin4θ+sin22θ+4cos2(π4θ2)=4sinθ+2\sqrt {4{{\sin }^4}\theta + {{\sin }^2}2\theta } + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = 4\sin \theta + 2
Therefore,Option B is the correct answer

Note: To solve this type of question we just need to learn all the identities such that we can find the particular form in the given expression so that an identity can be applied.Also, care has to be taken to apply the appropriate identity in accordance to the problem given