Solveeit Logo

Question

Question: If \[\pi < \theta < \dfrac{{3\pi }}{2}\] , the expression \[\sqrt {(4{{\sin }^4}\theta + 2{{\sin }^2...

If π<θ<3π2\pi < \theta < \dfrac{{3\pi }}{2} , the expression (4sin4θ+2sin22θ)+4cos2(π4θ2)\sqrt {(4{{\sin }^4}\theta + 2{{\sin }^2}2\theta )} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) equal to
A. 22
B. 2+4sinθ2 + 4\sin \theta
C. 24sinθ2 - 4\sin \theta
D. None of these

Explanation

Solution

Here we are asked to find the value of the given expression. But in the given expression there are trigonometric functions with higher powers. So, we need to use the existing trigonometric formula and simplify it. By doing this we can find the value of the given expression.
Formula: Some of the formulas that we need to know to solve this problem are:
cos(π2θ)=sinθ\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta
sin(2x)=2sinxcosx\sin (2x) = 2\sin x\cos x
sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1
cos(2x)=2cos2x1\cos (2x) = 2{\cos ^2}x - 1
a2=a\sqrt {{a^2}} = a

Complete step by step answer:
It is given that the angle lies between π&3π2\pi \& \dfrac{{3\pi }}{2} . The sine function is negative in this range. We aim to find the value of the expression (4sin4θ+2sin22θ)+4cos2(π4θ2)\sqrt {(4{{\sin }^4}\theta + 2{{\sin }^2}2\theta )} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) .
Now let us simplify the part inside the square root using the formula sin(2x)=2sinxcosx\sin (2x) = 2\sin x\cos x .
\Rightarrow (4sin4θ+2[2sin2θcos2θ])+4cos2(π4θ2)\sqrt {(4{{\sin }^4}\theta + 2[2{{\sin }^2}\theta {{\cos }^2}\theta ])} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)
On further simplification we get
\Rightarrow (4sin4θ+4sin2θcos2θ)+4cos2(π4θ2)\sqrt {(4{{\sin }^4}\theta + 4{{\sin }^2}\theta {{\cos }^2}\theta )} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)
Now let us take 4sin2θ4{\sin ^2}\theta commonly out.
\Rightarrow 22sin2θ(sin2θ+cos2θ)+4cos2(π4θ2)\sqrt {{2^2}{{\sin }^2}\theta ({{\sin }^2}\theta + {{\cos }^2}\theta )} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)
Let’s modify the above expression.
\Rightarrow 22sin2θ(sin2θ+cos2θ)+4cos2(π4θ2)\sqrt {{2^2}{{\sin }^2}\theta ({{\sin }^2}\theta + {{\cos }^2}\theta )} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right)
Now using the formula a2=a\sqrt {{a^2}} = a we get
\Rightarrow 2sin2θ(sin2θ+cos2θ)+4cos2(π4θ2)2\sqrt {{{\sin }^2}\theta ({{\sin }^2}\theta + {{\cos }^2}\theta )} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) ………. (1)(1)
Considering the formula cos(2x)=2cos2x1\cos (2x) = 2{\cos ^2}x - 1 we get
cos(2θ)=2cos2θ12cos2θ=1+cos(2θ)\cos (2\theta ) = 2{\cos ^2}\theta - 1 \Rightarrow 2{\cos ^2}\theta = 1 + \cos (2\theta )
Therefore, 2cos2(π4θ2)=1+cos(2π42θ2)=1+cos(π2θ)2{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) = 1 + \cos \left( {\dfrac{{2\pi }}{4} - \dfrac{{2\theta }}{2}} \right) = 1 + \cos \left( {\dfrac{\pi }{2} - \theta } \right)
Now let’s substitute it in the equation (1)(1) .
\Rightarrow 2sin2θ(sin2θ+cos2θ)+2[1+cos(π2θ)]2\sqrt {{{\sin }^2}\theta ({{\sin }^2}\theta + {{\cos }^2}\theta )} + 2\left[ {1 + \cos \left( {\dfrac{\pi }{2} - \theta } \right)} \right]
On simplifying this using, the formula sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1 we get
\Rightarrow 2sin2θ+2[1+cos(π2θ)]2\sqrt {{{\sin }^2}\theta } + 2\left[ {1 + \cos \left( {\dfrac{\pi }{2} - \theta } \right)} \right]
Now let’s take 22 commonly out from the above expression.
\Rightarrow 2(sin2θ+[1+cos(π2θ)])2\left( {\sqrt {{{\sin }^2}\theta } + \left[ {1 + \cos \left( {\dfrac{\pi }{2} - \theta } \right)} \right]} \right)
On simplifying this expression, we get
\Rightarrow 2(sinθ+[1+cos(π2θ)])2\left( {\left| {\sin \theta } \right| + \left[ {1 + \cos \left( {\dfrac{\pi }{2} - \theta } \right)} \right]} \right)
Using the formula cos(π2θ)=sinθ\cos \left( {\dfrac{\pi }{2} - \theta } \right) = \sin \theta we get
\Rightarrow 2(sinθ+[1+sinθ])2\left( {\left| {\sin \theta } \right| + \left[ {1 + \sin \theta } \right]} \right)
We know that the sine function is negative in the range π<θ<3π2\pi < \theta < \dfrac{{3\pi }}{2} . Applying this we get
\Rightarrow 2(sinθ+[1+sinθ])2\left( { - \sin \theta + \left[ {1 + \sin \theta } \right]} \right)
Now let us multiply 22 to the terms inside.
\Rightarrow 2sinθ+2+2sinθ- 2\sin \theta + 2 + 2\sin \theta
Now 2sinθ- 2\sin \theta &\& +2sinθ+ 2\sin \theta get canceled. So, we get
(4sin4θ+2sin22θ)+4cos2(π4θ2)\sqrt {(4{{\sin }^4}\theta + 2{{\sin }^2}2\theta )} + 4{\cos ^2}\left( {\dfrac{\pi }{4} - \dfrac{\theta }{2}} \right) 2 \Rightarrow 2

So, the correct answer is “Option A”.

Note: To find the value of any complicated function with trigonometric functions we first need to simplify those trigonometric functions using standard formulas of trigonometric functions and their identities. Then we have to check the given range to see whether the function is positive or negative in that range.