Solveeit Logo

Question

Question: If \[ - \pi < \arg \left( z \right) < \- \dfrac{\pi }{2}\] then \[ \arg \left( {\bar z} \right) - \a...

If π<arg(z)<\-π2 - \pi < \arg \left( z \right) < \- \dfrac{\pi }{2} then arg(zˉ)arg(z)= \arg \left( {\bar z} \right) - \arg \left( {\overline { - z} } \right) =
(1) π\pi
(2) π- \pi
(3) π2\dfrac{\pi }{2}
(4) π2\dfrac{{ - \pi }}{2}

Explanation

Solution

First we write the complex number zz in its polar form. After that we will find all the terms that are required in the question i.e., z - z , conjugate of zz and z - z (represented as zˉ\bar z and z\overline { - z} ) and argument of zˉ\bar z and z\overline { - z} , represented by arg(zˉ)\arg \left( {\bar z} \right) and arg(z)\arg \left( {\overline { - z} } \right) . Then substitute the value in the given condition to get the result.
Properties used:
(i) If z=a+ibz = a + ib ,then z=aib - z = - a - ib
(ii) If z=a+ibz = a + ib ,then zˉ=aib\bar z = a - ib
(iii) arg(z)=tan1(ba)\arg \left( z \right) = {\tan ^{ - 1}}\left( {\dfrac{b}{a}} \right)

Complete answer:
We have to find arg(zˉ)arg(z) (A)\arg \left( {\bar z} \right) - \arg \left( {\overline { - z} } \right){\text{ }} - - - \left( A \right)
Let zz be a complex number.
So, in polar form, z=cosθ+isinθ (1)z = \cos \theta + i\sin \theta {\text{ }} - - - \left( 1 \right)
And we know that,
if z=a+ibz = a + ib ,then z=aib - z = - a - ib
From equation (1)\left( 1 \right)
z=cosθisinθ (2)- z = - \cos \theta - i\sin \theta {\text{ }} - - - \left( 2 \right)
Now, we will find the conjugate of zz and z - z
i.e., If z=a+ibz = a + ib ,then zˉ=aib\bar z = a - ib , means we have to change the sign of coefficient of iota.
So, from equation (1)\left( 1 \right)
zˉ=cosθisinθ\bar z = \cos \theta - i\sin \theta
And we know that, sin(θ)=sinθ\sin \left( { - \theta } \right) = - \sin \theta and cos(θ)=cosθ\cos \left( { - \theta } \right) = \cos \theta
zˉ=cos(θ)+isin(θ) (3)\therefore \bar z = \cos \left( { - \theta } \right) + i\sin \left( { - \theta } \right){\text{ }} - - - \left( 3 \right)
And from equation (2)\left( 2 \right)
z=cosθ+isinθ\overline { - z} = - \cos \theta + i\sin \theta
As we can see that cos\cos is negative and sin\sin is positive, it is possible in 2nd quadrant
So, it can also be written as,
z=cos(πθ)+isin(πθ) (4)\overline { - z} = \cos \left( {\pi - \theta } \right) + i\sin \left( {\pi - \theta } \right){\text{ }} - - - \left( 4 \right)
Now, we will find argument of zˉ\bar z and z\overline { - z}
we know that arg(z)=tan1(ba)\arg \left( z \right) = {\tan ^{ - 1}}\left( {\dfrac{b}{a}} \right)
\therefore from (3)\left( 3 \right) , arg(zˉ)=tan1(sin(θ)cos(θ))\arg \left( {\bar z} \right) = {\tan ^{ - 1}}\left( {\dfrac{{\sin \left( { - \theta } \right)}}{{\cos \left( { - \theta } \right)}}} \right)
arg(zˉ)=tan1(tan(θ))\Rightarrow \arg \left( {\bar z} \right) = {\tan ^{ - 1}}\left( {\tan \left( { - \theta } \right)} \right)
And we know that,
tan1(tan(x))=x{\tan ^{ - 1}}\left( {\tan \left( x \right)} \right) = x
arg(zˉ)=θ\Rightarrow \arg \left( {\bar z} \right) = - \theta
Now from (4)\left( 4 \right) , arg(z)=tan1(sin(πθ)cos(πθ))\arg \left( {\overline { - z} } \right) = {\tan ^{ - 1}}\left( {\dfrac{{\sin \left( {\pi - \theta } \right)}}{{\cos \left( {\pi - \theta } \right)}}} \right)
arg(z)=tan1(tan(πθ))\Rightarrow \arg \left( {\overline { - z} } \right) = {\tan ^{ - 1}}\left( {\tan \left( {\pi - \theta } \right)} \right)
arg(z)=πθ \Rightarrow \arg \left( {\overline { - z} } \right) = \pi - \theta {\text{ }}
Now, substitute the value of arg(zˉ)\arg \left( {\bar z} \right) and arg(z)\arg \left( {\overline { - z} } \right) in (A)\left( A \right)
arg(zˉ)arg(z)=θ(πθ)\Rightarrow \arg \left( {\bar z} \right) - \arg \left( {\overline { - z} } \right) = - \theta - \left( {\pi - \theta } \right)
arg(zˉ)arg(z)=π\Rightarrow \arg \left( {\bar z} \right) - \arg \left( {\overline { - z} } \right) = - \pi
Hence option (2) is correct.

Note:
To solve this question, first we need to know about the polar form of complex numbers. We should also know about the basic properties of conjugate and argument of complex numbers. Also, while solving the question in which condition is given for angles, we should take care of that condition in the complete solution. Like in this question it is given that π<arg(z)<\-π2 - \pi < \arg \left( z \right) < \- \dfrac{\pi }{2} arg(z)=tan1(sinθcosθ)\arg \left( z \right) = {\tan ^{ - 1}}\left( {\dfrac{{\sin \theta }}{{\cos \theta }}} \right)
arg(z)=tan1(tan(θ))=θ\Rightarrow \arg \left( z \right) = {\tan ^{ - 1}}\left( {\tan \left( \theta \right)} \right) = \theta
It means that, in the given question
π<θ<\-π2- \pi < \theta < \- \dfrac{\pi }{2}
π<\-θ<π2\Rightarrow \pi < \- \theta < \dfrac{\pi }{2} which satisfies the condition for cos and sin in equation (3)\left( 3 \right)
Also, 0<πθ<π20 < \pi - \theta < \dfrac{\pi }{2} which satisfies the condition for cos and sin in equation (4)\left( 4 \right)