Solveeit Logo

Question

Question: If \(\pi\) and\(\pi\), then....

If π\pi andπ\pi, then.

A

zz

B

Im(z)>0{Im}(z) > 0

C

arg(z)arg(z)

D

π\pi

Answer

Im(z)>0{Im}(z) > 0

Explanation

Solution

Let zˉ2=35i{\bar{z}}_{2} = 3 - 5i

Then zˉ2z1z2=(35i)(1+2i)(3+5i)=13+i3+5i\frac{{\bar{z}}_{2}z_{1}}{z_{2}} = \frac{(3 - 5i)(1 + 2i)}{(3 + 5i)} = \frac{13 + i}{3 + 5i}

And 13+i3+5i×35i35i=4462i34\frac{13 + i}{3 + 5i} \times \frac{3 - 5i}{3 - 5i} = \frac{44 - 62i}{34}

Re(zˉ2z1z2)=4434=2217{Re}\left( \frac{{\bar{z}}_{2}z_{1}}{z_{2}} \right) = \frac{44}{34} = \frac{22}{17}

(3+i)z=(3i)zˉz=x(3i)xR(3 + i)z = (3 - i)\bar{z}z = x(3 - i)x \in R.