Question
Question: If \[\pi <\alpha <2\pi \] then \[\dfrac{1}{\sin \alpha -\sqrt{{{\cot }^{2}}\alpha -{{\cos }^{2}}\alp...
If π<α<2π then sinα−cot2α−cos2α1=
A. sinα
B. cos2α−sinα
C. sinα1
D. 1
Explanation
Solution
Hint: We will first start by using the fact that cotx=sinxcosx. Then we will take cos2x a common in the square root in the denominator. Then we will use the fact that 1−sin2α=cot2α to further solve the prove, then finally we will use the fact that cos2α=cos2α−sin2α to find the answer.
Complete step by step solution:
Now, we have to find the value of sinα−cot2α−cos2α1.
Now, we will take cot2αcommon inside the square root. So, we have,
⇒sinα−cot2α(1−cot2αcos2α)1
Now, we know that cot2α=sin2αcos2α.
⇒sinα−cot2α1−sin2αcos2αcos2α1⇒sinα−cot2α(1−sin2α)1
Now, we know that 1−sin2α=cos2α.