Solveeit Logo

Question

Question: If \[\pi <\alpha <2\pi \] then \[\dfrac{1}{\sin \alpha -\sqrt{{{\cot }^{2}}\alpha -{{\cos }^{2}}\alp...

If π<α<2π\pi <\alpha <2\pi then 1sinαcot2αcos2α=\dfrac{1}{\sin \alpha -\sqrt{{{\cot }^{2}}\alpha -{{\cos }^{2}}\alpha }}=
A. sinα\sin \alpha
B. sinαcos2α\dfrac{-\sin \alpha }{\cos 2\alpha }
C. 1sinα\dfrac{1}{\sin \alpha }
D. 1

Explanation

Solution

Hint: We will first start by using the fact that cotx=cosxsinx\cot x=\dfrac{\cos x}{\sin x}. Then we will take cos2x{{\cos }^{2}}x a common in the square root in the denominator. Then we will use the fact that 1sin2α=cot2α1-{{\sin }^{2}}\alpha ={{\cot }^{2}}\alpha to further solve the prove, then finally we will use the fact that cos2α=cos2αsin2α\cos 2\alpha ={{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha to find the answer.

Complete step by step solution:
Now, we have to find the value of 1sinαcot2αcos2α\dfrac{1}{\sin \alpha -\sqrt{{{\cot }^{2}}\alpha -{{\cos }^{2}}\alpha }}.
Now, we will take cot2α{{\cot }^{2}}\alpha common inside the square root. So, we have,
1sinαcot2α(1cos2αcot2α)\Rightarrow \dfrac{1}{\sin \alpha -\sqrt{{{\cot }^{2}}\alpha \left( 1-\dfrac{{{\cos }^{2}}\alpha }{{{\cot }^{2}}\alpha } \right)}}
Now, we know that cot2α=cos2αsin2α{{\cot }^{2}}\alpha =\dfrac{{{\cos }^{2}}\alpha }{{{\sin }^{2}}\alpha }.
1sinαcot2α(1cos2αcos2αsin2α) 1sinαcot2α(1sin2α) \begin{aligned} & \Rightarrow \dfrac{1}{\sin \alpha -\sqrt{{{\cot }^{2}}\alpha \left( 1-\dfrac{{{\cos }^{2}}\alpha }{\dfrac{{{\cos }^{2}}\alpha }{{{\sin }^{2}}\alpha }} \right)}} \\\ & \Rightarrow \dfrac{1}{\sin \alpha -\sqrt{{{\cot }^{2}}\alpha \left( 1-{{\sin }^{2}}\alpha \right)}} \\\ \end{aligned}
Now, we know that 1sin2α=cos2α1-{{\sin }^{2}}\alpha ={{\cos }^{2}}\alpha .

& \Rightarrow \dfrac{1}{\sin \alpha -\sqrt{{{\cot }^{2}}\alpha \times \left( {{\cos }^{2}}\alpha \right)}} \\\ & \Rightarrow \dfrac{1}{\sin \alpha -\cot \alpha \cos \alpha } \\\ \end{aligned}$$ Now, again we will use the fact that $\cot \alpha =\dfrac{\cos \alpha }{\sin \alpha }$. $\begin{aligned} & \Rightarrow \dfrac{1}{\sin \alpha -\dfrac{{{\cos }^{2}}\alpha }{\sin \alpha }} \\\ & \Rightarrow \dfrac{\sin \alpha }{{{\sin }^{2}}\alpha -{{\cos }^{2}}\alpha } \\\ & \Rightarrow \dfrac{-\sin \alpha }{{{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha } \\\ \end{aligned}$ Now, we know the fact that $\cos 2\alpha ={{\cos }^{2}}\alpha -{{\sin }^{2}}\alpha $. $\Rightarrow \dfrac{-\sin \alpha }{\cos 2\alpha }$ Hence, the correct option is (B). Note: It is important to note that to solve these question it is important to note that we have first used the identity ${{\cot }^{2}}\alpha =\dfrac{{{\cos }^{2}}\alpha }{{{\sin }^{2}}\alpha }$ to convert the expression inside the square root to ${{\cot }^{2}}\alpha {{\cos }^{2}}\alpha $. Also, it is important to remember the trigonometric identity that ${{\cos }^{2}}A-{{\sin }^{2}}A=\cos 2A$ to solve the problem completely.