Solveeit Logo

Question

Question: If \(\pi = {180^0}\) and \(A = \dfrac{\pi }{6}\), prove that \(\dfrac{{\left( {1 - \cos A} \right)\l...

If π=1800\pi = {180^0} and A=π6A = \dfrac{\pi }{6}, prove that (1cosA)(1+cosA)(1sinA)(1+sinA)=13\dfrac{{\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)}}{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}} = \dfrac{1}{3}

Explanation

Solution

It is given in the question that π=1800\pi = {180^0} and A=π6A = \dfrac{\pi }{6}.
So, we have to prove that (1cosA)(1+cosA)(1sinA)(1+sinA)=13\dfrac{{\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)}}{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}} = \dfrac{1}{3}.
we will take L.H.S and prove R.H.S.
Firstly, we will put the value of A=π6A = \dfrac{\pi }{6} in the equation. Then after, we will put the value of π=1800\pi = {180^0} in the equation which is formed by putting the value of A.
Finally, after solving the equation we will get the answer.

Formula Used:
(a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2}

Complete step by step solution:
It is given in the question that π=1800\pi = {180^0} and A=π6A = \dfrac{\pi }{6}.
So, we have to prove that (1cosA)(1+cosA)(1sinA)(1+sinA)=13\dfrac{{\left( {1 - \cos A} \right)\left( {1 + \cos A} \right)}}{{\left( {1 - \sin A} \right)\left( {1 + \sin A} \right)}} = \dfrac{1}{3}.
Let, L.H.S,
Now, put the value of A=π6A = \dfrac{\pi }{6} in the above equation, we get
=(1cosπ6)(1+cosπ6)(1sinπ6)(1+sinπ6)= \dfrac{{\left( {1 - \cos \dfrac{\pi }{6}} \right)\left( {1 + \cos \dfrac{\pi }{6}} \right)}}{{\left( {1 - \sin \dfrac{\pi }{6}} \right)\left( {1 + \sin \dfrac{\pi }{6}} \right)}}
Now, put the value of π=1800\pi = {180^0} in the above equation, we get
=(1cos18006)(1+cos18006)(1sin18006)(1+sin18006)= \dfrac{{\left( {1 - \cos \dfrac{{{{180}^0}}}{6}} \right)\left( {1 + \cos \dfrac{{{{180}^0}}}{6}} \right)}}{{\left( {1 - \sin \dfrac{{{{180}^0}}}{6}} \right)\left( {1 + \sin \dfrac{{{{180}^0}}}{6}} \right)}}
=(1cos300)(1+cos300)(1sin300)(1+sin300)= \dfrac{{\left( {1 - \cos {{30}^0}} \right)\left( {1 + \cos {{30}^0}} \right)}}{{\left( {1 - \sin {{30}^0}} \right)\left( {1 + \sin {{30}^0}} \right)}}
Since, we know that cos300=32\cos {30^0} = \dfrac{{\sqrt 3 }}{2} and sin300=12\sin {30^0} = \dfrac{1}{2}. put this value in the above equation, we get
=(132)(1+32)(112)(1+12)= \dfrac{{\left( {1 - \dfrac{{\sqrt 3 }}{2}} \right)\left( {1 + \dfrac{{\sqrt 3 }}{2}} \right)}}{{\left( {1 - \dfrac{1}{2}} \right)\left( {1 + \dfrac{1}{2}} \right)}}
=(232)(2+32)(212)(2+12)= \dfrac{{\left( {\dfrac{{2 - \sqrt 3 }}{2}} \right)\left( {\dfrac{{2 + \sqrt 3 }}{2}} \right)}}{{\left( {\dfrac{{2 - 1}}{2}} \right)\left( {\dfrac{{2 + 1}}{2}} \right)}}
=(232)(2+32)(212)(2+12)= \dfrac{{\left( {\dfrac{{2 - \sqrt 3 }}{{{2}}}} \right)\left( {\dfrac{{2 + \sqrt 3 }}{{{2}}}} \right)}}{{\left( {\dfrac{{2 - 1}}{{{2}}}} \right)\left( {\dfrac{{2 + 1}}{{{2}}}} \right)}}
=(23)(2+3)(21)(2+1)= \dfrac{{\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)}}{{\left( {2 - 1} \right)\left( {2 + 1} \right)}}
Now, using formula (a+b)(ab)=a2b2\left( {a + b} \right)\left( {a - b} \right) = {a^2} - {b^2} in the numerator, we get
=(2)2(3)2(1)(3)= \dfrac{{{{\left( 2 \right)}^2} - {{\left( {\sqrt 3 } \right)}^2}}}{{\left( 1 \right)\left( 3 \right)}}
=433= \dfrac{{4 - 3}}{3}
=13=R.H.S= \dfrac{1}{3} = R.H.S
L.H.S=R.H.S\Rightarrow L.H.S = R.H.S

Note:
Some formula of cosine function:

  1. cos(x)=cosx\cos \left( { - x} \right) = \cos x
  2. cos(x+2kπ)=cosx\cos \left( {x + 2k\pi } \right) = \cos x
  3. cos(x+y)=cosxcosysinxsiny\cos \left( {x + y} \right) = \cos x\cos y - \sin x\sin y
  4. cos(xy)=cosxcosy+sinxsiny\cos \left( {x - y} \right) = \cos x\cos y + \sin x\sin y
  5. cos2x=cos2xsin2x=2cos2x1\cos 2x = {\cos ^2}x - {\sin ^2}x = 2{\cos ^2}x - 1
  6. cosθ=1t21+t2\cos \theta = \dfrac{{1 - {t^2}}}{{1 + {t^2}}}