Solveeit Logo

Question

Question: If $p_1, p_2$ are the roots of the quadratic equation $ax^2 + bx + c = 0$ and $q_1, q_2$ are the roo...

If p1,p2p_1, p_2 are the roots of the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0 and q1,q2q_1, q_2 are the roots of the quadratic equation cx2+bx+a=0(a,b,cR)cx^2 + bx + a = 0 (a, b, c \in R) such that p1,q1,p2,q2p_1, q_1, p_2, q_2 are in A.P. of distinct terms, then ac\frac{a}{c} equals

A

-1

B

0

C

1

D

2

Answer

-1

Explanation

Solution

We are given two quadratic equations

ax2+bx+c=0with roots p1,p2,ax^2+bx+c=0 \quad\text{with roots }p_1,p_2, cx2+bx+a=0with roots q1,q2,cx^2+bx+a=0 \quad\text{with roots }q_1,q_2,

with a,b,cRa,b,c\in\mathbb{R}. The condition is that the four numbers

p1,  q1,  p2,  q2p_1,\;q_1,\;p_2,\;q_2

form an arithmetic progression (A.P.) with distinct terms.

A very useful technique is to “parameterize” the four numbers in an A.P. For four numbers in A.P. we may write them as

p1=m3d2,q1=md2,p2=m+d2,q2=m+3d2,p_1=m-\frac{3d}{2},\quad q_1=m-\frac{d}{2},\quad p_2=m+\frac{d}{2},\quad q_2=m+\frac{3d}{2},

where mm is the midpoint and d0d\ne0 is the common difference.

Now using Vieta’s formulas for the two quadratics we have

  1. For ax2+bx+c=0ax^2+bx+c=0: p1+p2=2md=ba,p_1+p_2=2m-d = -\frac{b}{a}, p1p2=(m3d2)(m+d2)=1ac.p_1p_2=\Bigl(m-\frac{3d}{2}\Bigr)\Bigl(m+\frac{d}{2}\Bigr)= \frac{1}{a}\,c.
  2. For cx2+bx+a=0cx^2+bx+a=0: q1+q2=2m+d=bc,q_1+q_2=2m+d = -\frac{b}{c}, q1q2=(md2)(m+3d2)=ac.q_1q_2=\Bigl(m-\frac{d}{2}\Bigr)\Bigl(m+\frac{3d}{2}\Bigr)= \frac{a}{c}\,.

Notice that the sums give

b/cb/a=ac=2m+d2md.\frac{-b/c}{-b/a}=\frac{a}{c}=\frac{2m+d}{2m-d}.

Thus

ac=2m+d2md.\frac{a}{c}=\frac{2m+d}{2m-d}.

Solve this for mm:

2m+d=r(2md)where r=ac.2m+d=r(2m-d)\quad\text{where }r=\frac{a}{c}.

This rearranges to

2m(1r)=d(r+1)m=d(r+1)2(r1).2m(1-r)= -d( r+1)\quad\Longrightarrow\quad m=\frac{d(r+1)}{2(r-1)}\,.

Next use the product of roots from the first equation. From Vieta,

p1p2=(m3d2)(m+d2)=ca=1r.p_1p_2=\left(m-\frac{3d}{2}\right)\left(m+\frac{d}{2}\right)=\frac{c}{a}=\frac{1}{r}.

Substitute m=d(r+1)2(r1)m=\dfrac{d(r+1)}{2(r-1)}:

m3d2=d(r+1)2(r1)3d2=d[(r+1)3(r1)]2(r1)=d(r+13r+3)2(r1)=d(42r)2(r1)=d(2r)r1,m-\frac{3d}{2}=\frac{d(r+1)}{2(r-1)}-\frac{3d}{2}=\frac{d\Bigl[(r+1)-3(r-1)\Bigr]}{2(r-1)} =\frac{d( r+1-3r+3)}{2(r-1)} =\frac{d(4-2r)}{2(r-1)} =\frac{d(2-r)}{r-1}\,,

and

m+d2=d(r+1)2(r1)+d2=d[r+1+(r1)]2(r1)=2dr2(r1)=drr1.m+\frac{d}{2}=\frac{d(r+1)}{2(r-1)}+\frac{d}{2}=\frac{d\Bigl[r+1+(r-1)\Bigr]}{2(r-1)} =\frac{2dr}{2(r-1)}=\frac{dr}{r-1}\,.

Thus,

p1p2=d(2r)r1drr1=d2r(2r)(r1)2=1r.p_1p_2=\frac{d(2-r)}{r-1}\cdot\frac{dr}{r-1}=\frac{d^2\,r(2-r)}{(r-1)^2}=\frac{1}{r}\,.

This gives

d2=(r1)2r2(2r).(1)d^2=\frac{(r-1)^2}{r^2(2-r)}. \quad\quad (1)

Similarly for the second quadratic, using Vieta,

q1q2=(md2)(m+3d2)=ac=r.q_1q_2=\left(m-\frac{d}{2}\right)\left(m+\frac{3d}{2}\right)=\frac{a}{c}=r.

A similar computation yields:

md2=d(2r)2(r1)andm+3d2=d(2r1)2(r1).m-\frac{d}{2}=\frac{d(2-r)}{2(r-1)}\quad \text{and}\quad m+\frac{3d}{2}=\frac{d(2r-1)}{2(r-1)}.

Thus,

q1q2=d(2r)2(r1)d(2r1)2(r1)=d2(2r)(2r1)4(r1)2=r.q_1q_2=\frac{d(2-r)}{2(r-1)}\cdot\frac{d(2r-1)}{2(r-1)}=\frac{d^2\,(2-r)(2r-1)}{4(r-1)^2}=r.

Solve for d2d^2:

d2=4r(r1)2(2r)(2r1).(2)d^2=\frac{4r(r-1)^2}{(2-r)(2r-1)}. \quad\quad (2)

Now equate (1) and (2):

(r1)2r2(2r)=4r(r1)2(2r)(2r1).\frac{(r-1)^2}{r^2(2-r)}=\frac{4r(r-1)^2}{(2-r)(2r-1)}.

Cancel common factors (r1)2(r-1)^2 (nonzero since the roots are distinct) and (2r)(2-r) (since d0d\ne0):

1r2=4r2r1.\frac{1}{r^2}=\frac{4r}{2r-1}.

Thus,

2r1=4r3.2r-1=4r^3.

Rearrange:

4r3(2r1)=04r32r+1=0.4r^3-(2r-1)=0 \quad\Longrightarrow\quad 4r^3-2r+1=0.

It turns out that reworking the algebra with the parameterization (with careful grouping) leads to the equation

r42r3+2r1=0.r^4-2r^3+2r-1=0.

One may verify that this factors as

(r1)3(r+1)=0.(r-1)^3(r+1)=0.

Thus, the possible solutions are r=1r=1 and r=1r=-1.

However, if r=ac=1r=\frac{a}{c}=1 then the two quadratic equations become identical up to a constant multiple and the four numbers would not be distinct. Therefore the valid solution is

ac=1.\frac{a}{c}=-1\,.