Solveeit Logo

Question

Mathematics Question on Conic sections

If P=(x,y),F1=(3,0),F2=(3,0)P = (x, y),F_1 = (3,0), F_2 = ( 3, 0) and 16x2+25y2=400, 16x^2 + 25y^2 = 400, then PF1+PF2PF_1 + PF_2 equals

A

8

B

6

C

10

D

12

Answer

10

Explanation

Solution

Given, 16 x^2 + 25y^2 = 400 \hspace10mm [given]
\implies \hspace10mm \frac{x^2}{25}+ \frac{y^2}{16} = 1
Here, \hspace10mm a^2 = 25, b^2 = 16
But \hspace10mm b^2 = a^2 (1- e^2)
\implies \hspace10mm 16= 25 (1-e^2) \implies \frac {16}{25}= 1- e^2
\implies \hspace10mm e^2 = 1 - \frac {16}{25} = \frac {9}{25}\implies e = \frac {3}{5}

Now, foci of the ellipse are (±ae,0)=(±3,0).(\pm ae, 0) = (\pm 3 ,0).
We have, \hspace10mm 3 = a \frac {3}{5} \implies \hspace5mm a = 5
Now, PF1+PF2=Majoraxis=2aPF_1 + PF_2 = Major\, axis = 2a
\hspace10mm = 2 \times 5 = 10