Solveeit Logo

Question

Question: If P (t<sup>2</sup>, 2t) t Ī [0, 2] is an arbitrary point on parabola y<sup>2</sup> = 4x. Q is foot ...

If P (t2, 2t) t Ī [0, 2] is an arbitrary point on parabola y2 = 4x. Q is foot of perpendicular from focus S on the tangent at P, then maximum area of DPQS is-

A

1

B

2

C

516\frac { 5 } { 16 }

D

5

Answer

5

Explanation

Solution

Equation of tangent at P is ty = x + t2

it intersects the line x = 0 at Q

**\**coordinates of Q are (0,t)

\ area of DPQS = 120t1101t22t1\frac { 1 } { 2 } \left| \begin{array} { c c c } 0 & \mathrm { t } & 1 \\ 1 & 0 & 1 \\ \mathrm { t } ^ { 2 } & 2 \mathrm { t } & 1 \end{array} \right|

= 12\frac { 1 } { 2 } [ – t (1 – t2) + 2t] = 12\frac { 1 } { 2 } (t + t3)

12\frac { 1 } { 2 } (3t2 + 1) > 0 " t

\ area is maximum for t = 2

Max. area = 12\frac { 1 } { 2 } [2 + 8] = 5