Solveeit Logo

Question

Question: If\[P{\text{ }} = {\text{ }}\left( {1,{\text{ }}1} \right),{\text{ }}Q{\text{ }} = {\text{ }}(3,{\te...

IfP = (1, 1), Q = (3, 2)P{\text{ }} = {\text{ }}\left( {1,{\text{ }}1} \right),{\text{ }}Q{\text{ }} = {\text{ }}(3,{\text{ }}2) and RR is a point on x  axisx{\text{ }} - {\text{ }}axis then the value of PR + RQPR{\text{ }} + {\text{ }}RQwill be minimum at
1)1) (53, 0)\left( {\dfrac{5}{3},{\text{ }}0} \right)
2)2) (13, 0)\left( {\dfrac{1}{3},{\text{ }}0} \right)
3)3) (3, 0)\left( {3,{\text{ }}0} \right)
4)4) (1, 0)\left( {1,{\text{ }}0} \right)

Explanation

Solution

Hint : We need to find the point RR such that PR + RQPR{\text{ }} + {\text{ }}RQ has the minimum value . We solve this by using the concept of coordinate system and applications of derivatives . Firstly we equate a relation in terms of a variable xx by using the distance formula then by using the concept of increasing and decreasing functions and computing it to zero we find the point RR .

Complete step-by-step answer :
Given :
Let point RR be (x , 0)\left( {x{\text{ }},{\text{ }}0} \right)[ as the point RR lies on xaxisx - axisthe value of y - coordinate is zero ]
Point P = (1 , 1)P{\text{ }} = {\text{ }}\left( {1{\text{ }},{\text{ }}1} \right)and point Q = (3 , 2)Q{\text{ }} = {\text{ }}\left( {3{\text{ }},{\text{ }}2} \right)
Now , using distance formula we get the value of PRPR and RQRQ
We know ,
Distance formula =[(x2x1)2+(y2y1)2]= \sqrt {[{{({x_2} - {x_1})}^2} + {{({y_2} - {y_1})}^2}]}
Using distance formula ,
PR=[(x1)2+(01)2]PR = \sqrt {[{{(x - 1)}^2} + {{(0 - 1)}^2}]}
PR=[(x1)2+1]PR = \sqrt {[{{(x - 1)}^2} + 1]}
Expanding the term , using (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab
PR=[x2+12x+1]PR = \sqrt {[{x^2} + 1 - 2x + 1]}
PR=[x22x+2]PR = \sqrt {[{x^2} - 2x + 2]}
Similarly , using distance formula we find RQRQ
RQ=[(3x)2+(20)2]RQ = \sqrt {[{{(3 - x)}^2} + {{(2 - 0)}^2}]}
RQ=[(3x)2+4]RQ = \sqrt {[{{(3 - x)}^2} + 4]}
Expanding the term , using (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab
RQ=[x2+96x+4]RQ = \sqrt {[{x^2} + 9 - 6x + 4]}
RQ=[x26x+13]RQ = \sqrt {[{x^2} - 6x + 13]}

Let y = PR + RQy{\text{ }} = {\text{ }}PR{\text{ }} + {\text{ }}RQ
y=[x22x+2]+[x26x+13]y = \sqrt {[{x^2} - 2x + 2]} + \sqrt {[{x^2} - 6x + 13]}
For minimum value , we differentiate  y\;y with respect to
dydx=12×1[x22x+2]×[2x2]+12×1[x26x+13]×[2x6]\dfrac{{dy}}{{dx}} = \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 2x + 2]} }} \times [2x - 2] + \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 6x + 13]} }} \times [2x - 6]
Put , dydx = 0\dfrac{{dy}}{{dx}}{\text{ }} = {\text{ }}0
12×1[x22x+2]×[2x2]+12×1[x26x+13]×[2x6]=0\dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 2x + 2]} }} \times [2x - 2] + \dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 6x + 13]} }} \times [2x - 6] = 0
On simplifying , we get
12×1[x22x+2]×[2x2]=12×1[x26x+13]×[2x6]\dfrac{1}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 2x + 2]} }} \times [2x - 2] = \dfrac{{ - 1}}{2} \times \dfrac{1}{{\sqrt {[{x^2} - 6x + 13]} }} \times [2x - 6]
Cancelling the terms and squaring both sides , we get
(x1)2[x22x+2]=(x3)2[x26x+13]\dfrac{{{{(x - 1)}^2}}}{{[{x^2} - 2x + 2]}} = \dfrac{{{{(x - 3)}^2}}}{{[{x^2} - 6x + 13]}}
Cross multiplying terms , we get
(x1)2×[x26x+13]=(x3)2×[x22x+2]{(x - 1)^2} \times [{x^2} - 6x + 13] = {(x - 3)^2} \times [{x^2} - 2x + 2]
Expanding the terms using (a+b)2=a2+b2+2ab{(a + b)^2} = {a^2} + {b^2} + 2ab , we get
[x22x+1]×[x26x+13]=[x26x+9]×[x22x+2][{x^2} - 2x + 1] \times [{x^2} - 6x + 13] = [{x^2} - 6x + 9] \times [{x^2} - 2x + 2]
Expanding the terms , we get
x42x3+x26x3+12x26x+13x226x+13=x46x3+9x22x3+12x218x+2x212x+18{x^4} - 2{x^3} + {x^2} - 6{x^3} + 12{x^2} - 6x + 13{x^2} - 26x + 13 = {x^4} - 6{x^3} + 9{x^2} - 2{x^3} + 12{x^2} - 18x + 2{x^2} - 12x + 18
After further simplifying the terms and after cancelling the terms , we get
3x22x5=03{x^2} - 2x - 5 = 0
Using splitting of roots ,
3x25x+3x5=03{x^2} - 5x + 3x - 5 = 0
The roots of the equation becomes as
(3x5)×(x+1)=0\left( {3x - 5} \right) \times \left( {x + 1} \right) = 0
So,
x=53x = \dfrac{5}{3} or x=1x = - 1
Hence , the value of point RR is (53,0)\left( {\dfrac{5}{3},0} \right)
Thus , the correct option is (1)\left( 1 \right)
So, the correct answer is “Option 1”.

Note : We get two values of xx . Neglecting x=1x = - 1is a negative value for dydx\dfrac{{dy}}{{dx}} which makes the values of PR+RQPR + RQmaximum . But in the question we had to find the value of point R for whichPR+RQPR + RQ was minimum , which is satisfied by (53,0)\left( {\dfrac{5}{3},0} \right) as it gives a positive value for dydx\dfrac{{dy}}{{dx}} .
If the value of the double derivative of a function is negative at a point then it is the point of minima and vice versa .